
Learning
OpenGL

OpenGL

OpenGL Libraries

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 3

• OpenGL32 on Windows
• GL on most unix/linux systems (libGL.a)

OpenGL core
library

• Provides functionality in OpenGL core but
avoids having to rewrite code

OpenGL Utility
Library (GLU)

• GLX for X window systems
• WGL for Windows
• AGL for Macintosh

Links with
window system

GLUT

• OpenGL Utility Toolkit (GLUT)
• Provides functionality common to all window systems

• Open a window
• Get input from mouse and keyboard
• Menus
• Event-driven

In the Beginning …

OpenGL 1.0 was
released between

1992-1993

Its pipeline was
entirely fixed-

function

the only operations
available were fixed by

the implementation

The pipeline
evolved

but remained based on
fixed-function operation

through
OpenGL versions 1.1

through 2.0 (Sept. 2004)

Primitive
Setup and

Rasterization

Fragment
Coloring and

Texturing
Blending

Vertex
Data

Pixel
Data

Vertex
Transform and

Lighting

Texture
Store

OpenGL 1.0

OpenGL 4.1

Primitive
Setup and

Rasterization

Fragment
Shader Blending

Vertex
Data

Pixel
Data

Vertex
Shader

Texture
Store

Geometry
Shader

Tessellation
Control
Shader

Tessellation
Evaluation

Shader

OpenGL
Functions

• Points
• Line Segments
• Polygons

Primitives

Attributes

• Viewing
• Modeling

Transformations

Control (GLUT)

Input (GLUT)

Query

OpenGL State

OpenGL is a state machine

• Primitive generating
• Can cause output if primitive is visible
• How vertices are processed, and appearance of

primitive are controlled by the state
• State changing

• Transformation functions
• Attribute functions

OpenGL functions are of two types

OpenGL
function format

glVertex3f(x,y,z)

belongs to GL library

function name

x,y,z are floats

glVertex3fv(p)

p is a pointer to an array

dimensions

OpenGL
#defines

Most constants are defined in the
include files gl.h, glu.h and glut.h
• Note #include <GL/glut.h> should

automatically include the others
• Examples
• glBegin(GL_POLYGON)
• glClear(GL_COLOR_BUFFER_BIT)

include files also define OpenGL
data types: GLfloat, GLdouble,….

glVertex
https://www.khronos.org/
registry/OpenGL-
Refpages/gl2.1/xhtml/glV
ertex.xml

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 13

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml

OpenGL portion of
white-square code

glClear(GL_COLOR_BUFFER_BIT); // black background

glLoadIdentity();

glOrtho(0, 4, 0, 4, -1, 1);

glBegin(GL_POLYGON);

// draw white square

 glVertex2i(1, 1);

 glVertex2i(3, 1);

 glVertex2i(3, 3);

 glVertex2i(1, 3);

glEnd();

glFlush();

// force completion

A Simple
Program
Generate a square on a solid
background

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 15

White-square code // Draw a white square against a black background

#include <windows.h>

#include <stdio.h>

#include <GL/glut.h>

void draw() {

 glClear(GL_COLOR_BUFFER_BIT);

 glLoadIdentity();

 glOrtho(0, 4, 0, 4, -1, 1);

 glBegin(GL_POLYGON);

 glVertex2i(1, 1);

 glVertex2i(3, 1);

 glVertex2i(3, 3);

 glVertex2i(1, 3);

 glEnd();

 glFlush();

}

int main(int argc, char** argv) {

 glutInit(&argc, argv);

 glutInitDisplayMode(GLUT_SINGLE | GLUT_RGBA);

 glutCreateWindow("whitesquare");

 glutDisplayFunc(draw);

 glutMainLoop();

}

OpenGL

GLUT

simple.c

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 17

#include <GL/glut.h>

void mydisplay(){

• glBegin(GL_POLYGON);
• glVertex2f(-0.5, -0.5);
• glVertex2f(-0.5, 0.5);
• glVertex2f(0.5, 0.5);
• glVertex2f(0.5, -0.5);

• glEnd();
• glFlush();

glClear(GL_COLOR_BUFFER_BIT);

}

• glutCreateWindow("simple");
• glutDisplayFunc(mydisplay);
• glutMainLoop();

int main(int argc, char** argv){

}

Event Loop

• Note that the program defines a display callback function
named mydisplay
• Every glut program must have a display callback
• The display callback is executed whenever OpenGL

decides the display must be refreshed, for example
when the window is opened

• The main function ends with the program entering an
event loop

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 1
8

Compilation
on Windows

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 19

• Get glut.h, glut32.lib and glut32.dll from web
• Create a console application
• Add opengl32.lib, glut32.lib, glut32.lib to

project settings (under link tab)

Visual C++

Borland C similar

• Can use gcc and similar makefile to linux
• Use –lopengl32 –lglu32 –lglut32 flags

Cygwin (linux under Windows)

Programming with OpenGL
Part 2: Complete Programs

Ed Angel

Professor of Computer Science, Electrical and Computer Engineering, and Media Arts

University of New Mexico

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 20

Program
Structure

simple.c revisited

• In this version, we shall see the same output, but we
have defined all the relevant state values through
function calls using the default values

• We set
• Colors
• Viewing conditions
• Window properties

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 22

main.c

#include <GL/glut.h>

int main(int argc, char** argv)

{

 glutInit(&argc,argv);

 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);

 glutInitWindowSize(500,500);

 glutInitWindowPosition(0,0);

 glutCreateWindow("simple");

 glutDisplayFunc(mydisplay);

 init();

 glutMainLoop();

}

includes gl.h

define window properties

set OpenGL state

enter event loop

display callback

GLUT
functions

• glutInit allows application to get command
line arguments and initializes system

• gluInitDisplayMode requests properties for
the window (the rendering context)
• RGB color
• Single buffering
• Properties logically ORed together

• glutWindowSize in pixels

• glutWindowPosition from top-left corner of
display

• glutCreateWindow create window with title
“simple”

• glutDisplayFunc display callback

• glutMainLoop enter infinite event loop

init.c

void init()

{

 glClearColor (0.0, 0.0, 0.0, 1.0);

 glColor3f(1.0, 1.0, 1.0);

 glMatrixMode (GL_PROJECTION);

 glLoadIdentity ();

 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

}

Angel: Interactive Computer
Graphics 4E © Addison-

25

black clear color

opaque window

fill/draw with white

viewing volume

Coordinate Systems
• The units in glVertex are determined by

the application and are called object or
problem coordinates

• The viewing specifications are also in object
coordinates and it is the size of the viewing
volume that determines what will appear in
the image

• Internally, OpenGL will convert to camera
(eye) coordinates and later to screen
coordinates

• OpenGL also uses some internal
representations that usually are not visible to
the application

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 26

OpenGL Camera
• OpenGL places a camera at the origin

in object space pointing in the
negative z direction

• The default viewing volume

 is a box centered at the

 origin with a side of

 length 2

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 27

http://www.songho.ca/opengl/gl_camera.html

http://www.songho.ca/opengl/gl_camera.html

Orthographic
Viewing
• In the default orthographic view, points
are
• projected forward along the z axis onto
the
• plane z=0

z=0

z=0

Transformations
and Viewing

• In OpenGL, projection is carried out by a
projection matrix (transformation)

• There is only one set of transformation functions
so we must set the matrix mode first

 glMatrixMode (GL_PROJECTION)

• Transformation functions are incremental, so
we start with an identity matrix and alter it with a
projection matrix that gives the view volume

 glLoadIdentity();

 glOrtho(-1.0, 1.0, -1.0, 1.0, -

1.0, 1.0);

How transformation
matrix work?
• Suppose you have a 3D object with
vertices defined in its local coordinate
system. Let's say the object has a
vertex at position (1, 2, 3) in its local
coordinate system, and you want to
translate it by (2, 3, 4) units in the world
coordinate system.

• To calculate the transformation matrix
for this translation, you can use the
following steps:

How transformation matrix work?

2. Set the translation values in the last column of the
matrix:

1 0 0 2
0 1 0 3
0 0 1 4
0 0 0 1

1. Start with the identity matrix, which represents no
transformation:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

How transformation matrix work?

Note that the first three columns of the matrix
represent the orientation and scaling of the object,
which remain unchanged by the translation.

3.Multiply the transformation matrix by the object's
local vertex coordinates as a column vector to obtain
the transformed vertex coordinates:

1 0 0 2 1 = 3
0 1 0 3 2 5
0 0 1 4 3 7
0 0 0 1 1 1

Further Learning

Two- and three-
dimensional
viewing

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 35

In glOrtho(left, right, bottom, top, near, far) the near
and far distances are measured from the camera

Two-dimensional vertex commands place all vertices in
the plane z=0

If the application is in two dimensions, we can use the
function

gluOrtho2D(left, right,bottom,top)

In two dimensions, the view or clipping volume becomes
a clipping window

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 36

OpenGL
Primitives

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 38

Polygon
Issues

• OpenGL will only display polygons correctly that
are
• Simple: edges cannot cross
• Convex: All points on line segment between

two points in a polygon are also in the
polygon

• Flat: all vertices are in the same plane

• User program can check if above true
• OpenGL will produce output if these

conditions are violated but it MAY not be
what is desired

• Triangles satisfy all conditions

nonsimple polygon
nonconvex polygon

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 40

Attributes

• Attributes are part of the OpenGL state and
determine the appearance of objects
• Color (points, lines, polygons)
• Size and width (points, lines)
• Stipple pattern (lines, polygons)
• Polygon mode

• Display as filled: solid color or stipple
pattern

• Display edges
• Display vertices

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 41

RGB color

• Each color component is stored
separately in the frame buffer

• Usually 8 bits per component in
buffer

• Note in glColor3f the color
values range from 0.0 (none) to 1.0
(all), whereas in glColor3ub the
values range from 0 to 255

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 43

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 44

Indexed Color

• Colors are indices into tables of RGB values

• Requires less memory
• indices usually 8 bits
• not as important now

• Memory inexpensive
• Need more colors for shading

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 45

Color and State
• The color as set by glColor becomes part of the state

and will be used until changed
• Colors and other attributes are not part of the object

but are assigned when the object is rendered

• We can create conceptual vertex colors by code such as

 glColor

 glVertex

 glColor

 glVertex

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 46

Smooth Color

• Default is smooth shading
• OpenGL interpolates vertex

colors across visible polygons

• Alternative is flat shading
• Color of first vertex
determines fill color

• glShadeModel

(GL_SMOOTH)

or GL_FLAT

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 47

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 48

OpenGL Viewports

Viewports
• Do not have use the

entire window for the
image:
glViewport(x,y,w,

h)

• Values in pixels (screen
coordinates)

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 50

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 51

The End

	Slide 1: Learning OpenGL
	Slide 2: OpenGL
	Slide 3: OpenGL Libraries
	Slide 4
	Slide 5: GLUT
	Slide 6: In the Beginning …
	Slide 7
	Slide 8
	Slide 9: OpenGL Functions
	Slide 10: OpenGL State
	Slide 11: OpenGL function format
	Slide 12: OpenGL #defines
	Slide 13: glVertex
	Slide 14: OpenGL portion of white-square code
	Slide 15: A Simple Program
	Slide 16: White-square code
	Slide 17: simple.c
	Slide 18: Event Loop
	Slide 19: Compilation on Windows
	Slide 20: Programming with OpenGL Part 2: Complete Programs
	Slide 21: Program Structure
	Slide 22: simple.c revisited
	Slide 23: main.c
	Slide 24: GLUT functions
	Slide 25: init.c
	Slide 26: Coordinate Systems
	Slide 27: OpenGL Camera
	Slide 28
	Slide 29: Orthographic Viewing
	Slide 30: Transformations and Viewing
	Slide 31: How transformation matrix work?
	Slide 32: How transformation matrix work?
	Slide 33: How transformation matrix work?
	Slide 34: Further Learning
	Slide 35: Two- and three-dimensional viewing
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Polygon Issues
	Slide 40
	Slide 41: Attributes
	Slide 42: RGB color
	Slide 43
	Slide 44
	Slide 45: Indexed Color
	Slide 46: Color and State
	Slide 47: Smooth Color
	Slide 48
	Slide 49
	Slide 50: Viewports
	Slide 51
	Slide 52

