Learning
OpenGL

Release
OpenGL 1.0
OpenGL 2.0
OpenGL 3.1
OpenGLES 2.0
WebGL 1.0
OpenGL 4.5
Vulcan 1.0
WebGL 2.0

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Year

1992
2004
2009
2010
2011

2014
2016
2016

OpenGL Libraries

OJoI=1pCIMefe] (=B « OpenGL32 on Windows
library e GL on most unix/linux systems (libGL.a)

OpenGL Utility BErYEEs functionality in OpenGL core but
Libra ry (G LU) avoids having to rewrite code

Links with e GLX for Xwindow systems

: e WGL for Windows
window system B® AGL for Macintosh

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 3

1232018 07

GL Library Organization

Under Microsoft Windows

OpenGl
application
program

[N

GLU

GL

N\

GLUT

DirectDraw

Frame
buffer

In the Beginning ...

OpenGL 1.0 was Its pipeline was -
: : The pipeline
released between entirely fixed- evolved
1992-1993 function
[) 4)
but remained based on
the only operations fixed-function operation
available were fixed by through
the implementation OpenGL versions 1.1
through 2.0 (Sept. 2004)

A / _ /

Vertex
DEIE!

Vertex
Transform and
Lighting
Primitive

Setup and
Rasterization

Texture

Fragment
Coloring and
Texturing

Store

OpenGL 1.0

Blending

v

Tessellation

Control -

Shader

>

Tessellation
Evaluation
Shader

Texture

OpenGL 4.1

Primitive

Fragment

Geometry

Shader

Setup and Shader Blending
Rasterization

Store

OpenGL

Functions

Primitives

* Points
e Line Segments
* Polygons

Attributes

Transformations

e \Viewing
* Modeling

Control (GLUT)

Input (GLUT)

Query

OpenGL State

OpenGL is a state machine

OpenGL functions are of two types

* Primitive generating
e Can cause output if primitive is visible

e How vertices are processed, and appearance of
primitive are controlled by the state

e State changing
e Transformation functions
e Attribute functions

O p en G L function name dimensions

function format //

Vertex3f(x,y,z)

AN

) X,y,z are floats
belongs to GL library y

glVertex3fv(p)

\ p IS a pointer to an array

Most constants are defined in the

iInclude files gl.h, glu.h and glut.h

e Note #include <GL/glut.h> should

O p en G L automatically include the others
. e Examples
#defines * glBegin(GL_POLYGON)

e glClear(GL_COLOR_BUFFER_BIT)

Include files also define OpenGL

data types: GLfloat, GLdouble,....

(LA A5\ /
VLA "*‘h:ii. iR

| "'-!";i"a'i- Py
RN T A A

L

glVertex

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 13

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml
https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml

OpenGL portion of
white-square code

glClear (GL _COLOR BUFFER BIT); // black background
glLoadIdentity () ;
glOrtho (0, 4, 0, 4, -1, 1);

glBegin (GL_POLYGON) ;

// draw white square
glVertex2i (1, 1);
glVertex2i (3, 1);
glVertex2i (3, 3);

OpenGL Demo in Visual C++

glVertex2i (1, 3);
glEnd () ;
glFlush{() ;

// force completion

A Simple
Program

Generate a square on a solid
background

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

White—Square COde // Draw a white square against a black background

#include <windows.h>
#include <stdio.h>
#include <GL/glut.h>

void draw () {
glClear (GL COLOR BUFFER BIT) ;
e glLoadIdentity () ;
glOrtho (0, 4, 0, 4, -1, 1);
glBegin (GL POLYGON) ;
glVertex2i (1, 1);

(1
OpenGL ,< glVertexZig, 1
(1

glVertex2i
glVertex2i
glEnd () ;

_ glFlush () ;

;3
3

’

int main(int argc, char** argv) {
glutInit (&argc, argv);
glutInitDisplayMode (GLUT SINGLE | GLUT_ RGBA) ;
glutCreateWindow ("whitesquare");

GLUT glutDisplayFunc (draw) ;
glutMainLoop () ;

simple.c

meeey H#include <GL/glut.h>

void mydisplay(}{

e SlClear(GL_COLOR_BUFFER_BIT);

e glBegin(GL_POLYGON);
e glVertex2f(-0.5, -0.5);
¢ glVertex2f(-0.5, 0.5);
¢ glVertex2f(0.5, 0.5);
¢ glVertex2f(0.5, -0.5);

* glEnd();

¢ glFlush();

—

int main(int argc, char** argv){

¢ glutCreateWindow("simple");
e glutDisplayFunc(mydisplay);
* glutMainLoop();

—

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 1 7

* Note that the program defines a display callback function
named mydisplay

* Every glut program must have a display callback

* The display callback is executed whenever OpenGL
decides the display must be refreshed, for example
when the window is opened

* Themain function ends with the program entering an
event loop

Event Loop

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Compilation
on Windows

Visual C++

e Get glut.h, glut32.lib and glut32.dll from web

e Create a console application

e Add opengl32.lib, glut32.lib, glut32.lib to
project settings (under link tab)

Borland C similar

Cygwin (linux under Windows

e Can use gcc and similar makefile to linux
* Use —-lopengl32 -lglu32 -lglut32 flags

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 1 9

= -
o - . ’ - -
T, R o v
¢ W% o ¥ s L .
- - . il ’
= . ~ ’ .
. .\.. o ¢ ’
= - £ - - 2
.
Y .. \ .o' .. s pe
. . | R R
- 9 Y L 4
- . L " 1 4 .‘ .
o % P F .
- -
.. .‘. - ..‘ -
.‘ .' 4 ” ".
. -
'] ’

h pen-GL
te Progra

..
-, * .
‘

- -
. l (
. ,». - ... t - .
. - . > . .
'.o... S0 et T I TR LI . .: e ° o
@ . . , “ . .
. . l,o / LN .. & - ~« - .
ol e AR
‘. ;'. , ..’ y . a ; N o
” § LI N 3
. i .. o .. » . et ‘ ~§\\ s
P . .. - . . A
- . . - . “\
? ?® . -. : - -
o . . . Y -
» . o B . -
. . A . .
ngel: Int 20
. . -
L
s ,0 : =3 33333 . - ..
4 P T Cccccccccccvccccccmn sese > .

* Most OpenGL programs have a similar
structure that consists of the following
functions

* main():
* defines the callback functions
P * opens one or more windows
rO g ra m with the required properties
* enters event loop (last
executable statement)
St r u Ct u re e init (): setsthe state variables
* Viewing
* Attributes
* callbacks

* Display function
* |nput and window functions

21

simple.c revisited

* |[n this version, we shall see the same output, but we
have defined all the relevant state values through
function calls using the default values

* We set
* Colors
* Viewing conditions
* Window properties

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 22

main.c

includes gl.h

A

#include <GL/glut.h>

int main(int argc, char** argv)

{
glutInit (&argc,argv) ;
glutInitDisplayMode (GLUT SINGLE |GLUT RGB) ;
glutInitWindowSize (500,500) ;
glutInitWindowPosition (0,0) ;
glutCreateWindow ("simple") ; T
glutDisplayFunc (mydisplay) ; define window properties

init () ; ™\ display callback

glutMaiﬁfSBﬁij\\~ set OpenGL state
" enter event loop

* glutInit allows applicationto get command
line arguments and initializes system

* gluInitDisplayMode requests properties for
the window (the rendering context)
* RGB color

* Single buffering
G LUT * Properties logically ORed together

* glutWindowSize in pixels

functions

* glutWindowPosition from top-left corner of
display

* glutCreateWindow create window with title
“simple”

* glutDisplayFunc display callback

* glutMainLoop enterinfinite eventloop

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

ilnit.c

black clear color

void init() *////////////’///OWMUGWWMmN

{
glClearColor (0.0, 0.0, 0.0, 1.0);

glColor3£(1.0, 1.0, 1.0); «—— fill/draw with white
glMatrixMode (GL PROJECTION) ;

glLoadIdentity ()
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

\ viewing volume

Angel: Interactive Computer 25
Cranhire AF © Addienn-

Coordinate Systems

* The units in glVertex are determined by
the application and are called object or
problem coordinates

* The viewing specifications are also in object
coordinates and it is the size of the viewing
volume that determines what will appear in
the image

* Internally, OpenGL will convert to camera
(eye) coordinates and later to screen
coordinates

* OpenGL also uses some internal
representations that usually are not visible to
the application]‘52" s ', 45

150\
l65~
180=

15 2 \\
30/

/
45 13
60 'ﬂ'“"“‘\\mu
75 gq 105

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Camera

* OpenGL places a camera at the origin
in object space pointing in the
negative z direction

* The default viewing volume
Is a box centered at the
origin with a side of
length 2

Fasiton (00 00 00)
Rotaton. (00 00 0.0}

http://www.songho.ca/opengl/gl_camera.html

Orthographic
Viewing

* |In the default orthographic view, points
are

* projected forward along the z axis onto
the

* plane z=0

Viewing rectangle

Transformations
and Viewing

In OpenGL, projection is carried out by a
projection matrix (transformation)

There is only one set of transformation functions
so we must set the matrix mode first

glMatrixMode (GL_PROJECTION)

Transformation functions are incremental, so
we start with an identity matrix and alter it with a
projection matrix that gives the view volume

glLoadIdentity () ;
glOortho(-1.0, 1.0, -1.0, 1.0, -
1.0, 1.0);

How transformation
matrix work?

* Suppose you have a 3D object with
vertices defined in its local coordinate
system. Let's say the object has a
vertex at position (1, 2, 3) in its local
coordinate system, and you want to
translate it by (2, 3, 4) units in the world
coordinate system.

* To calculate the transformation matrix
for this translation, you can use the
following steps:

How transformation matrix work?

1. Start with the identity matrix, which represents no

transformation:

1000
0100
0010
0001

2. Set the translation values in the last column of the
matrix:

1002
0103
0014
0001

How transformation matrix work?

Note that the first three columns of the matrix
represent the orientation and scaling of the object,
which remain unchanged by the translation.

3.Multiply the transformation matrix by the object's
local vertex coordinates as a column vector to obtain

the transformed vertex coordinates:

1002 1 =3
0103 2 5
0014 3 7
0001 1 1

Further Learning

In glOrtho(left, right, bottom, top, near, far) the near
and far distances are measured from the camera

Two-dimensional vertex commands place all vertices in
the plane z=0

Two- and three-

If the applicationis in two dimensions, we can use the

dimensional function

viewing gluOrtho2D(left, right,bottom,top)

In two dimensions, the view or clipping volume becomes
a clipping window

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 35

(right, top, —tar)

z = —far

View volume

= —near
\
/.\

\ - X

(left, bottom, —near)

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

{¢v >, 20 8 " ZsortBy

(NS 11 N

Places B RenderingEngine © B tinyrende
_ & Home / » home > mbassili > Documents >

O Desktop

Documents Name

£ Downloads > mdeviog

idth(0), height(0), bytespp(0) {} o Trash > B obj
~__ = [1otherSSD h geometry.h
)) @ data(-
t*bytespp; £ output.tga - 1/1 - 800x800 - 100% v X

5
)

pp

.md
e.cpp
e.h

(image, 151.9 KiB)

RenderingEn

OpenGL

eight*bytespp;

Primitives

Ip
ine]$ make

age.o
tgaimage.o -1m
inel$% ./main

inels []

filename) {

< filename -

eader));

ing the headerin”;

Ln51,Col22 TabSize:4 UTF-8 LF C++ ﬁ,

] ®
Va Vi
GL_POINTS

Va Vs

A

Va Vi
GL_POLYGON

Vs W,

Vs Vg Vs
q V2 3
2 Vv ‘ v Ve P Vi
. "’4.@ 1 b a

Va
GL_TRIANGLE_FAN

Va

—a
Vo Vi Va

Vs Va Vs
V2 Vs ’ Vs
Vi Va Wy

GL_LINES GL_LINE_STRIP GL_LINE_LOOP

Va V3 Vs A
7) ‘
Vs A b A
J Ve va V2 T
VEI "u"1 8

GL_TRIANGLES GL_TRIANGLE_STRIP
v; Vs

4
V3 V-g "U"z Vﬂ

GL_QUADS GL_QUAD_STRIP

OpenGL Primitives

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

* OpenGL will only display polygons correctly that
are

* Simple: edges cannot cross

* Convex: All points on line segment between
two points in a polygon are also in the
polygon

* Flat: all vertices are in the same plane

* User program can check if above true

* OpenGL will produce output if these
conditions are violated but it MAY not be
what is desired

* Triangles satisfy all conditions

-

: nonconvex polygon
nonsimple polygon

Comnex MNonConivex

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 40

TYAYTAY Y "

Attributes

e Attributes are part of the OpenGL state and
determine the appearance of objects

e Color (points, lines, polygons)

* Size and width (points, lines)

* Stipple pattern (lines, polygons)
* Polygon mode

* Display as filled: solid color or stipple
pattern

* Display edges
* Display vertices

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

41

RGB color

Each color component is stored
separately in the frame buffer

* Usually 8 bits per componentin
buffer

* NoteinglColor3f the color
values range from 0.0 (none)to 1.0
(all), whereas in glColor3ub the
values range from 0 to 255

e use3 0.8 270 360

B Select Color

Basic colors

‘ | - desc2 0.8 180 270

Custom colors

Aﬁ Add to Custom Colors

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Setting colors of Objects

glColor3f (Red, Green, Blue)

gl@pler3E (0.0, 6.0, G.0); black
glGolor3f (1.0, 0.0, 0.0); red
glCol6¥3T (00 L:07 0.0)4 green
glileler3E (1.0, L0, Q.0);

gllolor3E (0.0; 0+:Q0, 1+Q); blue
glColor3t (1.0 00y 1:0)3 magenta
glCelor3ft (0.0; 1.0 1.0): “yan
gl@plersE (1.0, L.0z L.0); white
glC81.6F3E (0:5; 0.0 0.0) dark red
glColor3£(0.0, 0.5, 0.0); dark green
glCelor3dE (0.0; 0.0, @:5); dark blue

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 44

Index PRed Green Blue

0
1
Indexed Color
L]
292
* Colors are indices into tables of RGB values
* Requires less memory
* indices usually 8 bits
* not as important now
* Memory inexpensive
— {\ * Need more colors for shading
ﬁ:] c:;h_F;r"- | Blue ‘

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 45

Color and State

* The color as set by glColor becomes part of the state
and will be used until changed

* Colors and other attributes are not part of the object
but are assigned when the object is rendered

* We can create conceptual vertex colors by code such as
glColor
glVertex
glColor
glVertex

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 46

Smooth Color

* Defaultis smooth shading
* OpenGL interpolates vertex
colors across visible polygons
* Alternative is flat shading
* Color of first vertex
determines fill color

* glShadeModel
(GL_SMOOTH)
or GL_FLAT

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 47

é\?am The Image

* Color of last vertex with flat shading

glShadeModel(GL_FLAT) glShadeModel(GL_SMOOTH)

Centre for Computational Technologies
Simulation is The Future!

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Viewports

far-clipping-plane

nearcppngpan/

Viewports

f[\\
Rl O | - Viewport
* Do not have use the o 1
entire window for the x4 w | {t~Graphics window
image: y 1
glViewport(x,y,w, — v
h)
[Je

* Values in pixels (screen

: = ——
coordinates) ipping window

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 50

Device Screen Device Screen
GL Viewport takes up whole screen GL Viewport scaled vertically

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 51

The End

	Slide 1: Learning OpenGL
	Slide 2: OpenGL
	Slide 3: OpenGL Libraries
	Slide 4
	Slide 5: GLUT
	Slide 6: In the Beginning …
	Slide 7
	Slide 8
	Slide 9: OpenGL Functions
	Slide 10: OpenGL State
	Slide 11: OpenGL function format
	Slide 12: OpenGL #defines
	Slide 13: glVertex
	Slide 14: OpenGL portion of white-square code
	Slide 15: A Simple Program
	Slide 16: White-square code
	Slide 17: simple.c
	Slide 18: Event Loop
	Slide 19: Compilation on Windows
	Slide 20: Programming with OpenGL Part 2: Complete Programs
	Slide 21: Program Structure
	Slide 22: simple.c revisited
	Slide 23: main.c
	Slide 24: GLUT functions
	Slide 25: init.c
	Slide 26: Coordinate Systems
	Slide 27: OpenGL Camera
	Slide 28
	Slide 29: Orthographic Viewing
	Slide 30: Transformations and Viewing
	Slide 31: How transformation matrix work?
	Slide 32: How transformation matrix work?
	Slide 33: How transformation matrix work?
	Slide 34: Further Learning
	Slide 35: Two- and three-dimensional viewing
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Polygon Issues
	Slide 40
	Slide 41: Attributes
	Slide 42: RGB color
	Slide 43
	Slide 44
	Slide 45: Indexed Color
	Slide 46: Color and State
	Slide 47: Smooth Color
	Slide 48
	Slide 49
	Slide 50: Viewports
	Slide 51
	Slide 52

