
Programming with OpenGL
Part 3b: Three Dimensions
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Objectives
• Develop a more sophisticated three-dimensional 

example

• Sierpinski gasket: a fractal

• Introduce hidden-surface removal
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Three-
dimensional 
Applications

• In OpenGL, two-dimensional 
applications are a special case of three-
dimensional graphics

• Going to 3D

• Not much changes

• Use glVertex3*( )

• Have to worry about the order in 
which polygons are drawn or use 
hidden-surface removal

• Polygons should be simple, convex, 
flat
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Start with a triangle

Connect bisectors of sides and 
remove central triangle

Repeat

Sierpinski Gasket (2D)
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Example 
Five subdivisions
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The 
gasket as 
a fractal
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• Consider the filled area (black) and the 
perimeter (the length of all the lines around 
the filled triangles)

• As we continue subdividing

• the area goes to zero

• but the perimeter goes to infinity

• This is not an ordinary geometric object

• It is neither two- nor three-dimensional

• It is a fractal (fractional dimension) object
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Gasket 
Program

#include <stdlib.h>

#include <GL/glut.h>

/* initial triangle */

GLfloat v[3][2] = { {-1.0, -0.58},

{1.0, -0.58}, {0.0, 1.15} };

GLfloat colors[4][3] = { { 1.0, 0.0, 0.0 
}, { 0.0, 1.0, 0.0 },

{ 0.0, 0.0, 1.0 }, { 0.0, 0.0, 0.0 } };

int n; /* number of recursive steps */
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Draw one triangle
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glVertex — specify a vertex

https://www.khronos.org/registry/OpenGL-
Refpages/gl2.1/xhtml/glVertex.xml

void triangle(GLfloat* va, GLfloat* vb, 
GLfloat* vc)
{

glColor3fv(colors[0]);
glVertex2fv(va);
glColor3fv(colors[1]);
glVertex2fv(vb);
glColor3fv(colors[3]);
glVertex2fv(vc);

}

//a pointer to an array with three 
elements.

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml
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a b

c
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triangle(a, b, c)); // draw tetrahedron
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So how to turn from this 

Into this?
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Get it?



Angel: Interactive Computer Graphics 4E © Addison-Wesley 
2005 13

Hint – get the middle point first
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a b

c

FIRST FOR LOOP
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How to code?

Divide between A and B
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Get x and y

mid1 = (𝑎𝑥 + 𝑏𝑥) / 2;
mid2 = (𝑎𝑦 + 𝑏𝑦) / 2;

But not so cool enough!!
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for (j = 0; j<2; j++)
{
mid[0][j] = (a[j] + b[j]) / 2;
}
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a b

c

SECOND FOR LOOP
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for (j = 0; j<2; j++) 
{
mid[1][j] = (a[j] + c[j]) / 2;
}
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a b

c

THIRD FOR LOOP
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for (j = 0; j<2; j++) 
{
mid[2][j] = (b[j] + c[j]) / 2;
}
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/* create tetrahedrons by subdivision */
divide_tetra(a, mid[0], mid[1], m - 1);
divide_tetra(c, mid[1], mid[2], m - 1);
divide_tetra(b, mid[2], mid[0], m - 1);

Now divide it
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/* create tetrahedrons by subdivision */
divide_tetra(a, mid[0], mid[1], m - 1);
divide_tetra(c, mid[1], mid[2], m - 1);
divide_tetra(b, mid[2], mid[0], m - 1);

Deduct by -1 to enter the loop again
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void divide_tetra(GLfloat *a, GLfloat *b, GLfloat *c, int m)
{
GLfloat mid[3][3];
int j;

if (m>0)
{

/* compute six midpoints */
for (j = 0; j<2; j++) mid[0][j] = (a[j] + b[j]) / 2;
for (j = 0; j<2; j++) mid[1][j] = (a[j] + c[j]) / 2;
for (j = 0; j<2; j++) mid[2][j] = (b[j] + c[j]) / 2;
/* create tetrahedrons by subdivision */
divide_tetra(a, mid[0], mid[1], m - 1);
divide_tetra(c, mid[1], mid[2], m - 1);
divide_tetra(b, mid[2], mid[0], m - 1);

}
else

(tetra(a, b, c)); /* draw tetrahedron at end of recursion */
}
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display and init Functions

void display()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glBegin(GL_TRIANGLES);

divide_triangle(v[0], v[1], v[2], n);

glEnd();

glFlush();

}
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display and init Functions

void myReshape(int w, int h)

{
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (w <= h)
glOrtho(-2.0, 2.0, -2.0 * (GLfloat)h / (GLfloat)w,
2.0 * (GLfloat)h / (GLfloat)w, -10.0, 10.0);
else
glOrtho(-2.0 * (GLfloat)w / (GLfloat)h,
2.0 * (GLfloat)w / (GLfloat)h, -2.0, 2.0, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glutPostRedisplay();

}
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http://www.songho.ca/opengl/gl_transform.html

http://www.songho.ca/opengl/gl_transform.html
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main Function
int main(int argc, char** argv)

{

n = 1; /* or enter number of subdivision steps here */

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize(500, 500);

glutCreateWindow("3D Gasket");

glutReshapeFunc(myReshape);

glutDisplayFunc(display);

glEnable(GL_DEPTH_TEST);

glClearColor(1.0, 1.0, 1.0, 1.0);

glutMainLoop();

}
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Efficiency 
Note
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By having the glBegin and glEnd in the 
display callback rather than in the function 
triangle and using GL_TRIANGLES
rather than GL_POLYGON in glBegin, 
we call glBegin and glEnd only once for 
the entire gasket rather than once for each 
triangle
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Moving 
to 3D

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

• We can easily make the program three-
dimensional by using 

GLfloat v[4][3]

glVertex3f

glOrtho

• But that would not be very interesting

• Instead, we can start with a tetrahedron
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3D Gasket

• We can subdivide each of the four faces

• Appears as if we remove a solid tetrahedron from the center leaving 
four smaller tetrahedra
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Example 
after 5 iterations
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triangle 
code
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void triangle( GLfloat *a, 

GLfloat *b,   GLfloat *c)

{

glVertex3fv(a);

glVertex3fv(b);

glVertex3fv(c);

}
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subdivision code

void divide_tetra(GLfloat *a, GLfloat *b, GLfloat
*c, GLfloat *d, int m)
{

GLfloat mid[6][3];
int j;
if (m>0)
{
/* compute six midpoints */

for (j = 0; j<3; j++) mid[0][j] = (a[j] + b[j]) / 2;
for (j = 0; j<3; j++) mid[1][j] = (a[j] + c[j]) / 2;
for (j = 0; j<3; j++) mid[2][j] = (a[j] + d[j]) / 2;
for (j = 0; j<3; j++) mid[3][j] = (b[j] + c[j]) / 2;
for (j = 0; j<3; j++) mid[4][j] = (c[j] + d[j]) / 2;
for (j = 0; j<3; j++) mid[5][j] = (b[j] + d[j]) / 2;

/* create 4 tetrahedrons by subdivision */

divide_tetra(a, mid[0], mid[1], mid[2], m - 1);
divide_tetra(mid[0], b, mid[3], mid[5], m - 1);
divide_tetra(mid[1], mid[3], c, mid[4], m - 1);
divide_tetra(mid[2], mid[4], d, mid[5], m - 1);

}
else(tetra(a, b, c, d)); /* draw tetrahedron at end 
of recursion */
}
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tetrahedron code

void tetrahedron( int m)

{

glColor3f(1.0,0.0,0.0);

divide_triangle(v[0], v[1], v[2], m);

glColor3f(0.0,1.0,0.0);

divide_triangle(v[3], v[2], v[1], m);

glColor3f(0.0,0.0,1.0);

divide_triangle(v[0], v[3], v[1], m);

glColor3f(0.0,0.0,0.0);

divide_triangle(v[0], v[2], v[3], m);

}
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Almost Correct
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• Because the triangles are drawn in the order they are defined in the 
program, the front triangles are not always rendered in front of 
triangles behind them

get this

want this



Hidden-Surface 
Removal

• We want to see only those surfaces in 
front of other surfaces

• OpenGL uses a hidden-surface method 
called the z-buffer algorithm that saves 
depth information as objects are 
rendered so that only the front objects 
appear in the image
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Using the 
z-buffer 
algorithm
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• The algorithm uses an extra buffer, the z-
buffer, to store depth information as geometry 
travels down the pipeline

• It must be

• Requested in main.c

• glutInitDisplayMode

(GLUT_SINGLE | GLUT_RGB | 

GLUT_DEPTH)

• Enabled in init.c

• glEnable(GL_DEPTH_TEST)

• Cleared in the display callback

• glClear(GL_COLOR_BUFFER_B

IT | 

GL_DEPTH_BUFFER_BIT)
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Surface vs 
Volume 
Subdvision
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• In our example, we divided the surface of 
each face

• We could also divide the volume using the 
same midpoints

• The midpoints define four smaller 
tetrahedrons, one for each vertex

• Keeping only these tetrahedrons removes a 
volume in the middle

• See text for code
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Volume Subdivision
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