
Programming with OpenGL
Part 3b: Three Dimensions

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 1

Guided by Hamzah Asyrani Sulaiman

Objectives
• Develop a more sophisticated three-dimensional

example

• Sierpinski gasket: a fractal

• Introduce hidden-surface removal

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 2

Three-
dimensional
Applications

• In OpenGL, two-dimensional
applications are a special case of three-
dimensional graphics

• Going to 3D

• Not much changes

• Use glVertex3*()

• Have to worry about the order in
which polygons are drawn or use
hidden-surface removal

• Polygons should be simple, convex,
flat

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 3

Start with a triangle

Connect bisectors of sides and
remove central triangle

Repeat

Sierpinski Gasket (2D)

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 4

Example
Five subdivisions

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 5

The
gasket as
a fractal

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

• Consider the filled area (black) and the
perimeter (the length of all the lines around
the filled triangles)

• As we continue subdividing

• the area goes to zero

• but the perimeter goes to infinity

• This is not an ordinary geometric object

• It is neither two- nor three-dimensional

• It is a fractal (fractional dimension) object

6

Gasket
Program

#include <stdlib.h>

#include <GL/glut.h>

/* initial triangle */

GLfloat v[3][2] = { {-1.0, -0.58},

{1.0, -0.58}, {0.0, 1.15} };

GLfloat colors[4][3] = { { 1.0, 0.0, 0.0
}, { 0.0, 1.0, 0.0 },

{ 0.0, 0.0, 1.0 }, { 0.0, 0.0, 0.0 } };

int n; /* number of recursive steps */

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 7

Draw one triangle

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 8

glVertex — specify a vertex

https://www.khronos.org/registry/OpenGL-
Refpages/gl2.1/xhtml/glVertex.xml

void triangle(GLfloat* va, GLfloat* vb,
GLfloat* vc)
{

glColor3fv(colors[0]);
glVertex2fv(va);
glColor3fv(colors[1]);
glVertex2fv(vb);
glColor3fv(colors[3]);
glVertex2fv(vc);

}

//a pointer to an array with three
elements.

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 9

a b

c

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 10

triangle(a, b, c)); // draw tetrahedron

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 11

So how to turn from this

Into this?

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 12

Get it?

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 13

Hint – get the middle point first

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 14

a b

c

FIRST FOR LOOP

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 15

How to code?

Divide between A and B

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 16

Get x and y

mid1 = (𝑎𝑥 + 𝑏𝑥) / 2;
mid2 = (𝑎𝑦 + 𝑏𝑦) / 2;

But not so cool enough!!

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 17

for (j = 0; j<2; j++)
{
mid[0][j] = (a[j] + b[j]) / 2;
}

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 18

a b

c

SECOND FOR LOOP

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 19

for (j = 0; j<2; j++)
{
mid[1][j] = (a[j] + c[j]) / 2;
}

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 20

a b

c

THIRD FOR LOOP

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 21

for (j = 0; j<2; j++)
{
mid[2][j] = (b[j] + c[j]) / 2;
}

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 22

/* create tetrahedrons by subdivision */
divide_tetra(a, mid[0], mid[1], m - 1);
divide_tetra(c, mid[1], mid[2], m - 1);
divide_tetra(b, mid[2], mid[0], m - 1);

Now divide it

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 23

/* create tetrahedrons by subdivision */
divide_tetra(a, mid[0], mid[1], m - 1);
divide_tetra(c, mid[1], mid[2], m - 1);
divide_tetra(b, mid[2], mid[0], m - 1);

Deduct by -1 to enter the loop again

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 24

void divide_tetra(GLfloat *a, GLfloat *b, GLfloat *c, int m)
{
GLfloat mid[3][3];
int j;

if (m>0)
{

/* compute six midpoints */
for (j = 0; j<2; j++) mid[0][j] = (a[j] + b[j]) / 2;
for (j = 0; j<2; j++) mid[1][j] = (a[j] + c[j]) / 2;
for (j = 0; j<2; j++) mid[2][j] = (b[j] + c[j]) / 2;
/* create tetrahedrons by subdivision */
divide_tetra(a, mid[0], mid[1], m - 1);
divide_tetra(c, mid[1], mid[2], m - 1);
divide_tetra(b, mid[2], mid[0], m - 1);

}
else

(tetra(a, b, c)); /* draw tetrahedron at end of recursion */
}

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 25

display and init Functions

void display()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glBegin(GL_TRIANGLES);

divide_triangle(v[0], v[1], v[2], n);

glEnd();

glFlush();

}

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 26

display and init Functions

void myReshape(int w, int h)

{
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (w <= h)
glOrtho(-2.0, 2.0, -2.0 * (GLfloat)h / (GLfloat)w,
2.0 * (GLfloat)h / (GLfloat)w, -10.0, 10.0);
else
glOrtho(-2.0 * (GLfloat)w / (GLfloat)h,
2.0 * (GLfloat)w / (GLfloat)h, -2.0, 2.0, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glutPostRedisplay();

}

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 27

http://www.songho.ca/opengl/gl_transform.html

http://www.songho.ca/opengl/gl_transform.html

28

29

main Function
int main(int argc, char** argv)

{

n = 1; /* or enter number of subdivision steps here */

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB | GLUT_DEPTH);

glutInitWindowSize(500, 500);

glutCreateWindow("3D Gasket");

glutReshapeFunc(myReshape);

glutDisplayFunc(display);

glEnable(GL_DEPTH_TEST);

glClearColor(1.0, 1.0, 1.0, 1.0);

glutMainLoop();

}

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 30

Efficiency
Note

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

By having the glBegin and glEnd in the
display callback rather than in the function
triangle and using GL_TRIANGLES
rather than GL_POLYGON in glBegin,
we call glBegin and glEnd only once for
the entire gasket rather than once for each
triangle

31

Moving
to 3D

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

• We can easily make the program three-
dimensional by using

GLfloat v[4][3]

glVertex3f

glOrtho

• But that would not be very interesting

• Instead, we can start with a tetrahedron

32

3D Gasket

• We can subdivide each of the four faces

• Appears as if we remove a solid tetrahedron from the center leaving
four smaller tetrahedra

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 33

Example
after 5 iterations

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 34

triangle
code

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

void triangle(GLfloat *a,

GLfloat *b, GLfloat *c)

{

glVertex3fv(a);

glVertex3fv(b);

glVertex3fv(c);

}

35

subdivision code

void divide_tetra(GLfloat *a, GLfloat *b, GLfloat
*c, GLfloat *d, int m)
{

GLfloat mid[6][3];
int j;
if (m>0)
{
/* compute six midpoints */

for (j = 0; j<3; j++) mid[0][j] = (a[j] + b[j]) / 2;
for (j = 0; j<3; j++) mid[1][j] = (a[j] + c[j]) / 2;
for (j = 0; j<3; j++) mid[2][j] = (a[j] + d[j]) / 2;
for (j = 0; j<3; j++) mid[3][j] = (b[j] + c[j]) / 2;
for (j = 0; j<3; j++) mid[4][j] = (c[j] + d[j]) / 2;
for (j = 0; j<3; j++) mid[5][j] = (b[j] + d[j]) / 2;

/* create 4 tetrahedrons by subdivision */

divide_tetra(a, mid[0], mid[1], mid[2], m - 1);
divide_tetra(mid[0], b, mid[3], mid[5], m - 1);
divide_tetra(mid[1], mid[3], c, mid[4], m - 1);
divide_tetra(mid[2], mid[4], d, mid[5], m - 1);

}
else(tetra(a, b, c, d)); /* draw tetrahedron at end
of recursion */
}

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 36

tetrahedron code

void tetrahedron(int m)

{

glColor3f(1.0,0.0,0.0);

divide_triangle(v[0], v[1], v[2], m);

glColor3f(0.0,1.0,0.0);

divide_triangle(v[3], v[2], v[1], m);

glColor3f(0.0,0.0,1.0);

divide_triangle(v[0], v[3], v[1], m);

glColor3f(0.0,0.0,0.0);

divide_triangle(v[0], v[2], v[3], m);

}

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 37

Almost Correct

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005 38

• Because the triangles are drawn in the order they are defined in the
program, the front triangles are not always rendered in front of
triangles behind them

get this

want this

Hidden-Surface
Removal

• We want to see only those surfaces in
front of other surfaces

• OpenGL uses a hidden-surface method
called the z-buffer algorithm that saves
depth information as objects are
rendered so that only the front objects
appear in the image

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 39

Using the
z-buffer
algorithm

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

• The algorithm uses an extra buffer, the z-
buffer, to store depth information as geometry
travels down the pipeline

• It must be

• Requested in main.c

• glutInitDisplayMode

(GLUT_SINGLE | GLUT_RGB |

GLUT_DEPTH)

• Enabled in init.c

• glEnable(GL_DEPTH_TEST)

• Cleared in the display callback

• glClear(GL_COLOR_BUFFER_B

IT |

GL_DEPTH_BUFFER_BIT)

40

Surface vs
Volume
Subdvision

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

• In our example, we divided the surface of
each face

• We could also divide the volume using the
same midpoints

• The midpoints define four smaller
tetrahedrons, one for each vertex

• Keeping only these tetrahedrons removes a
volume in the middle

• See text for code

41

Volume Subdivision

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 42

