Programming with OpenGL
Part 3b:Ihree Dimensions

Guided'by Hamzah Asyrani Sulaiman

* Develop a more sophisticated three-dimensional
example

O bJ eCt|VeS Sierpinski gasket: a fractal

* |ntroduce hidden-surface removal

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

* In OpenGL, two-dimensional
applications are a special case of three-
dimensional graphics

* Goingto 3D
T h re e _ * Not much changes
* UseglVertex3*()
. . * Have to worry about the order in
d I m e n S I O n a | which polygons are drawn or use
hidden-surface removal
* Polygons should be simple, convex,

Applications

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 3

Sierpinski Gasket (2D)

Start with a triangle ‘

Connect bisectors of sides and

Repeat

remove central triangle

Angel: Interactive Computer Graphics 4E © Addison-Wesley 4
2005

Example

Five subdivisions

The
gasket as
a fractal

Consider the filled area (black) and the
perimeter (the length of all the lines around
the filled triangles)
As we continue subdividing

* the area goes to zero

* but the perimeter goes to infinity

This is not an ordinary geometric object
* |t is neither two- nor three-dimensional

It is a fractal (fractional dimension) object

#include <stdlib.h>
#include <GL/glut.h>

/* initial triangle */

GaSket GLfloat v[3][2] = { {-1.0, -0.58},
PrOgram {1.0, -0.58}, {0.0, 1.15} };

GLfloat colors[4][3] = { { 1.0, 0.0, 0.0
}, { 0.0, 1.0, 0.0 },

{90.0, 0.0, 1.0 }, { 0.0, 0.0, 0.0 } };

int n; /* number of recursive steps */

Angel: Interactive Computer Graphics 4E © Addison-Wesley 7
2005

Draw one triangle

//a pointer to an array with three
elements.

void triangle(GLfloat* va, GLfloat* vb,

GLfloat* vc)

{
glColor3fv(colors[0]);
glVertex2fv(va);
glColor3fv(colors[1]);
glVertex2fv(vb);
glColor3fv(colors[3]);
glVertex2fv(vc);

gl\Vertex — specify a vertex

Angel: Interactive Compumer rapnics ISOn-wesley

2005 8

https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/glVertex.xml

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

triangle(a, b, c)); // draw tetrahedron

&= 2D Gasket ===

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

So how to turn from this

@ 2D Gasket

[=l==]

&= 2D Gasket

Into this?

Angel: Interactive Computer Graphics 4E © Addison-Wesley

2005

11

Get it?

< 2D Gasket

EI@ @ 2D Gasket

(===

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

12

Hint — get the middle point first

< 2D Gasket

EEIE

Angel: Interactive Computer Graphics 4E © Addison-Wesley

2005

< 2D Gasket

EIEEE]

13

FIRST FOR LOOP

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

14

How to code?

Divide between A and B

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

15

Getxandy

midl = (a, + b,
mid?2

]
~
Q
<
+
oy
<
~—

But not so cool enough!!

Angel: Interactive Computer Graphics 4E © Addison-Wesley

2005 16

for (j = 9; j<2; j++)
{
}mid[e][j] = (a[j] + b[3]) / 2;

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

17

SECOND FOR LOOP

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

18

for (j = 9; j<2; j++)
{
r;id[l][j] = (a[j] + c[3]) / 2;

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

19

THIRD FOR LOOP

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

20

for (j = 9; j<2; j++)
{
r;id[Z][j] = (b[J] + c[3]) / 2;

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

21

Now divide it

/* create tetrahedrons by subdivision */
divide tetra(a, mid[@], mid[1], m - 1);
divide tetra(c, mid[1], mid[2], m - 1);
divide tetra(b, mid[2], mid[@], m - 1);

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

22

/* create tetrahedrons by subdivision */
divide tetra(a, mid[@], mid[1], m - 1);
divide tetra(c, mid[1], mid[2], m - 1);
divide tetra(b, mid[2], mid[@], m - 1);

Deduct by -1 to enter the loop again

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

23

void divide_ tetra(GLfloat *a, GLfloat *b, GLfloat *c, int m)

{
GLfloat mid[3][3];
int j;
if (m>0)
{
/* compute six midpoints */
for (J = @; j<2; j++) mid[@][j] = (a[]j] + b[j]) / 2;
for (J = @; j<2; j++) mid[1][j] = (a[Jj] + <[J]) / 2;
for (J = @; Jj<2; j++) mid[2][j] = (b[J] + c[J]) / 2;
/* create tetrahedrons by subdivision */
divide tetra(a, mid[@], mid[1], m - 1);
divide tetra(c, mid[1], mid[2], m - 1);
divide tetra(b, mid[2], mid[@], m - 1);
}
else
(tetra(a, b, c)); /* draw tetrahedron at end of recursion */
}

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

24

& 2D Gasket o ||l= | =]

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

25

display and init Functions

void display()

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES);

divide_triangle(v[©], v[1], v[2], n);

glEnd();

glFlush();

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

26

display and init Functions

void myReshape(int w, int h)

{
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if (w <= h)
glortho(-2.0, 2.0, -2.0 * (GLfloat)h / (GLfloat)w,
2.0 * (GLfloat)h / (GLfloat)w, -10.0, 10.0);
else
glOortho(-2.0 * (GLfloat)w / (GLfloat)h,
2.0 * (GLfloat)w / (GLfloat)h, -2.0, 2.0, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glutPostRedisplay();

¥ http://www.songho.ca/opengl/gl transform.html

Angel: Interactive Computer Graphics 4E © Addison-Wesley 27
2005

http://www.songho.ca/opengl/gl_transform.html

¥E OpenGL ModelYiew Matrix

¥

Fosition Y

Fitch ()
Heading ()

Roll (2)

Yiew (Carmera)

| Reset View (Carmera) |

Madel

Fosition

Rotation

Reset Model

22

16

1.00

0.00

0.00

0.00

Wiew Matrix
0.00 0.00

078 -0.63

063 078

0.00 0.00

0.00

-0.11

-7.81

1.00

OpenGL calls for Yiew Matrix

(Translate -= Pitch -> Heading -> Roll)
glRotatef(39,0,0,1);
glRotatef(-0,0,1,0);
glRotatef(0,1,0,0);
glTranslatef(-0,-5,-6);

0.96

0.10

-0.26

0.00

Madel Matrix
0.00 028

092 -0.36

037 0.9

0.00 0.00

0.00

0.00

0.00

1.00

MaodeMiew Matrix
095 000 028 000

024 048 -0.84 -0.11

-0.13 087 047 -7.81

0.00 000 000 1.00

OpenGL calls for Model Matrix

(RotZ -»= Roty -»= Rot -» Translate)
glTranslatef(0,0,0);
glRotatef(ZZ,1,0,0);

glRotatef(l6,0,1,0);
glRotatef(0,0,0,1); !

28

A% OpenGL Projection Matrix

Projection Type Projection Parameters Projection Matrix

_ (2n 0 r+l 0 \
@ Perspective Left I 05 200 000 000 0.00 r—1 r—1
(O orthographic ; 2 t+b

Right § U 000 200 000 000 0 5 & 0
Bottom I -0.5
Rendering Mode 0.00 0.00 290 200D 0 0 M ﬂ
@Fill Taop I 0.5 —n f—n
Cliirstans . I g 0.00 000 -100 0.00 \ 0 0 1 0)
OPaints Rl I 10 | 6
Reset Parameters L/

29

main Function

int main(int argc, char** argv)

{

n=1; /* or enter number of subdivision steps here */
glutInit(&argc, argv);

glutInitDisplayMode(GLUT_SINGLE | GLUT RGB | GLUT_DEPTH);

glutInitWindowSize (500, 500);
glutCreateWindow("3D Gasket");
glutReshapeFunc(myReshape);
glutDisplayFunc(display);
glEnable(GL_DEPTH_TEST);
glClearColor(1.0, 1.0, 1.0, 1.0);
glutMainLoop();

Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

30

By having the glBegin and glEnd in the

Effl C I e n C display callback rather than in the function
y triangle and using GL_TRIANGLES
rather than GL_POLYGON in glBegin,
we call glBegin and glEnd only once for

N O t e the entire gasket rather than once for each
triangle

Moving
to 3D

* We can easily make the program three-
dimensional by using

GLfloat v[4][3]

glVertex3f

glOrtho

e But that would not be very interesting

e |nstead, we can start with a tetrahedron

3D Gasket

* \We can subdivide each of the four faces

e Appears as if we remove a solid tetrahedron from the center leaving
four smaller tetrahedra

Angel: Interactive Computer Graphics 4E © Addison-Wesley 33
2005

Example

after 5 iterations

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 34

triangle
code

void triangle(GLfloat *a,
GLfloat *b, GLfloat *c)

{
glVertex3fv(a) ;
glVertex3fv (b) ;
glVertex3fv(c) ;

subdivision code

void divide_tetra(GLfloat *a, GLfloat *b, GLfloat divide_tetra(a, mid[@], mid[1], mid[2], m - 1);
*c, GLfloat *d, int m) divide_tetra(mid[@], b, mid[3], mid[5], m - 1);
{ divide_tetra(mid[1], mid[3], c, mid[4], m - 1);
divide_tetra(mid[2], mid[4], d, mid[5], m - 1);
GLfloat mid[6][3];
int j; }
if (m>0) else(tetra(a, b, c, d)); /* draw tetrahedron at end
{ of recursion */
/* compute six midpoints */ }
for (J = @; Jj<3; Jj++) mid[@][j] = (a[j] + b[J]) / 2;
for (J = @; Jj<3; Jj++) mid[1][j] = (a[J] + c[J]) / 2;
for (J = @; Jj<3; Jj++) mid[2][j] = (a[]J] + d[J]) / 2;
for (J = @; Jj<3; J++) mid[3][j] = (b[J] + c[J]) / 2;
for (J = @; Jj<3; Jj++) mid[4][j] = (c[J] + d[J]) / 2;
for (J = @; Jj<3; J++) mid[5][j] = (b[J] + d[J]) / 2;
/* create 4 tetrahedrons by subdivision */
Angel: Interactive Computer Graphics 4E © Addison-Wesley 36

2005

tetrahedron code

void tetrahedron(int m)

{

glColor3£(1.0,0.0,0.0) ;
divide triangle(v[0], v[1], Vv[2], m);
glColor3£(0.0,1.0,0.0) ;
divide triangle(v[3], v[2], Vv[1], m);
glColor3£(0.0,0.0,1.0);
divide triangle(v[0], v[3], v[1], m);
glColor3£(0.0,0.0,0.0) ;
divide triangle(v[0], v[2], Vv[3], m);

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

37

Almost Correct

* Because the triangles are drawn in the order they are defined in the
program, the front triangles are not always rendered in front of
triangles behind them

Angel: Interactive Computer Graphics 4E © Addison-Wesley 38
2005

Hidden-Surface
Removal

* We want to see only those surfaces in
front of other surfaces

* OpenGL uses a hidden-surface method
called the z-buffer algorithm that saves
depth information as objects are
rendered so that only the front objects
appear in the image

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 39

* The algorithm uses an extra buffer, the z-

buffer, to store depth information as geometry
travels down the pipeline

U " t h * |t must be
S I n g e * Requested inmain.c
* glutInitDisplayMode
b .I:f (GLUT_SINGLE | GLUT RGB |
Z - u e r GLUT_DEPTH)

* Enabledin init.c
. * glEnable (GL_DEPTH TEST)
a | g O r I t h m * Cleared in the display callback
* glClear (GL _COLOR BUFFER B
IT |

GL DEPTH BUFFER BIT)

Surface vs
Volume
Subdvision

In our example, we divided the surface of
each face

We could also divide the volume using the
same midpoints

The midpoints define four smaller
tetrahedrons, one for each vertex

Keeping only these tetrahedrons removes a
volume in the middle

See text for code

Volume Subdivision

