Input and
Interaction

Hamzah Asyrani Sulaiman

Input

Devices




Physical Device




Incremental (Relative)
Devices

Must integrate these inputs to obtain an
absolute position

* Rotation of cylinders in mouse

* Roll of trackball

* Difficult to obtain absolute position
* Can get variable sensitivity




‘Ax Save as Building Block...

Save as Picture...

Change Picture 4

Logical Properties b |

88 Arrange Thumbnails

IQ’! Format Picture..s

Zoom

% Hyperlink...

Similar Trajectory

* What is returned to program via API Similar Appearance Shapes
e A position '
* An object identifier

Spraying Drinking Phone Cup

Contextual cues from human interactions aids in Contextual cues from object aids in
object recognition action recognition



Logical Properties

The code provides logical input

A number (an int) is returned to the program regardless of the
physical device

Consider the C and C++ code
C++:cin>>x;
C: scanf (“%d”, &x);




Logical
Properties
(Graphical

Locator: return a position

Pick: return ID of an object

Keyboard: return strings of characters
Stroke: return array of positions
Valuator: return floating point number
Choice: return one of nitems

Input)




()

Input Modes

Graphics server Workstation Workstation

Print server

{

* How and wheninputis
obtained

* Request or event

7
Compute server File server Graphics server




Input Modes

Input devices contain a trigger which
can be used to send a signal to the
operating system

* Button on mouse
* Pressing or releasing a key

When triggered, input devices return
information (their measure) to the
system

* Mouse returns position
information

* Keyboard returns ASCII code




Terminology

measure - information returned to user
program

eone or more characters from a
keyboard

eposition for a locator

trigger - way device user can signal the
computer that input is available

eEnter key
ebutton on locator

JJDDDDDI.I(
JITIIILIT
LITTITT

‘ [_]{_{l | )




Trigger
process

Trigger

Measure -

process

Request

I
Measure

Request Mode

Program




Trigger
process

Trigger

Measure

process

Measure

Event Mode

Event
queue

Await

Program \
Event




Event Mode

Window: resize, expose, iconify
Mouse: click one or more buttons
Motion: move mouse

Keyboard: press or release a key

Idle: nonevent

Define what should be done if no other
eventis in queue

®eelection at the end -add
P _ob.select= 1

jer_ob.select=1
sntext.scene.objects.activ

M "Selected” + str(modifier iV
#eirror _ob.select = ©
bpy . context.selected_ob
data.objects[one.name].se




GLUT callbacks

* glutDisplayFunc

* glutMouseFunc

* glutReshapeFunc

* glutKeyboardFunc

* glutldleFunc

* glutMotionFunc, glutPassiveMotionFunc




GLUT Event Loop

glutMainLoop() ; Event Queue

glutMainLoop();

which puts the program in an infinite
event loop

Call mouse function g <+— Mouse event

<«—— Keyboard event

<«—— Display event

+«— [ouse event




The display callback

glutDisplayFunc (mydisplay)

identifies the function to be executed

When the window is first opened
When the window is reshaped

When a window is exposed
When the user program decides it wants to
change the display

glutPostRedisplay() ;

GLUT checks to see if the flag is set at the end of the event loop



A dlutDisplayFunc is called whenever your window must be redrawn. This includes the time when one
calls glutPostRedisplay :)

13

When does 3 window need to be redrawn?
https://stackoverflow.com/questi

» When its size changes ons/4206472/understanding-the-
. - relationship-between-
¢ » when it becomes visible glutdisplayfunc-and-

* when some paris of it become visible glutpostredisplay/4206529

« when it is moved

s 2iC

But what if your display function paints a tnangle at position x;y where x;y; are determined by the
mouse position? In this case you must ask the system to redraw the window whenever the mouse Is
moved right? That's why you'll call glutPostRedisplay from MouseFunc(). Actually when you call
glutPostRedisplay, the redraw event is queued along with other window-events, like mouse click ets.
Essentially what your mainLoop does it pick events from that queue and call their handlers

share improve this answer answered Mov 17 '10 at 16:15

H Armen Tsirunyan
874K »40 #2538 » 379



https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529
https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529
https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529
https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529
https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529

Animating a Display

glClear () clearing the window

glutInitDisplayMode (GL RGB | GL DOUBLE)

void mydisplay ()
{
glClear (GL_COLOR BUFFER BIT]|...)

/* draw graphics here */

glutSwapBuffers ()




* When using GL_SINGLE, you can picture your

lefe rence code drawing directly to the display.
between Sl I’lgle * When using GL_DOUBLE, you can picture
having two buffers. One of them is always
b Uffe red (G LUT_ visible, the other one is not. You always render to
SI N G LE) an d the buffer that is not currently visible. When
you're done rendering the frame, you swap the
double buffered two buffers, making the one you just rendered
. visible. The one that was previously visible is
d Frawl ng(G LUT_ now invisible, and you use it for rendering the
next frame. So the role of the two buffers is
DO U B LE) reversed each frame.




/ :
/Sc reen /
S

s

l..-..-..

Front Buffer Back Buffer




« Single Buffering (GLUT_SINGLE, Default)

| Graphic Frame Video | Display
Processor Controller Device

* Double Buffering (GLUT_DOUBLE)
cf.) triple buffering

Graphic Video

Processor Controller




_——— = — ===

i
5 S
(1)




In single buffer mode, you call this at
the end:

glFlush();
In double buffer mode, you call:

glutSwapBuffers();




You must read this slide together with the text book or Angel Powerpoint slides

Working with Callbacks

Hamzah Asyrani Sulaiman



Using the idle callback

glutIdleFunc (myidle)

The idle callback is executed whenever there are no events in
the event queue

« Use for animation and continuous
update
glutidleFunc( idle );
void idle( void )
{
t +=dft;
glutPostRedisplay();

}




The mouse callback

* glutMouseFunc(mymouse)

* void mymouse(GLint button, GLint state, GLint x,
GLinty)




Positioning

OpenGL uses a world coordinate system with
origin at the bottom left

eMust invert y coordinate returned by
callback by height of window

°y= h_y;

0.0) _—r A

A
v




Terminating a program

void mouse (int btn, int state, int x, int y)
{
if (btn==GLUT_RIGHT_BUTTON &&
state==GLUT DOWN)
exit (0) ;
}




Drawing squares at cursor location

void mymouse (int btn, int state, int x, int y)
{
if (btn==GLUT RIGHT BUTTON && state==GLUT DOWN)
exit (0) ;
if (btn==GLUT LEFT BUTTON && state==GLUT DOWN)
drawSquare (x, Vy);
}
void drawSquare (int x, int y)
{
y=w-y; /* invert y position */
glColor3ub( (char) rand() %256, (char) rand ) %256,
rand () $256); /* a random color */
glBegin (GL POLYGON) ;
glVertex2f (x+size, y+size);
glVertex2f (x-size, y+size);
glVertex2f (x-size, y-size);
glVertex2f (x+size, y-size);
glEnd() ;

Angel: Interactive Computer Graphics 4E © Addison-Wesley
28 2005

(char)



Using the motion callback

We can draw squares (or anything else) continuously as long
as a mouse button is depressed by using the motion
callback

glutMotionFunc(drawSquare)

We can draw squares without depressing a button using the
passive motion callback

glutPassiveMotionFunc(drawSquare)




Using the keyboard

glutKeyboardFunc (mykey)

void mykey (unsigned char key,int x, int y)

Returns ASCII code of key depressed and mouse location

void mykey ()

{
if(key == ‘Q’' | key == ‘q’)
exit (0) ;



Special and Modifier Keys

Function key 1: GLUT KEY F1l
Up arrow key: GLUT . KEY UP
if (key == ‘GLUT . KEY F1’ .

Returns ASCII code of key depressed and mouse location

Can also check of one of the modifiers
GLUT ACTIVE SHIFT

GLUT ACTIVE CTRL
GLUT ACTIVE ALT




Reshaping the window

We can reshape and resize the OpenGL

display window by pulling the corner of
the window

Must redraw from application
Two possibilities
O Display part of world
O Display whole world but force to fit in new window
v’ Can alter aspect ratio




Reshape possiblities

o

208

reshaped



The Reshape callback

glutReshapeFunc (myreshape)
void myreshape( int w, int h)

e Returns width and height of new window (in pixels)
* A redisplay is posted automatically at end of execution of the

callback
 GLUT has a default reshape callback but you probably want to
define your own




The Reshape callback

void myReshape (int w, int h)

{

glViewport (0, 0, w, h);

glMatrixMode (GL PROJECTION) ; /* switch matrix mode */

glLoadIdentity () ;

if (w <= h)

gluOrtho2D(-2.0, 2.0, -2.0 * (GLfloat) h / (GLfloat) w,

2.0 * (GLfloat) h / (GLfloat) w);

else gluOrtho2D(-2.0 * (GLfloat) w / (GLfloat) h, 2.0 *
(GLfloat) w / (GLfloat) h, -2.0, 2.0);

glMatrixMode (GL MODELVIEW) ; /* return to modelview mode */




Toolkits and Widgets

Fropeties

[ ‘Wireframe [ ] Menus

segments:[ 37 =
scale:[2a1545 | 3 Sl|deba s
Dials

C Lights +F
Input boxes

C Options +|J
Bounding box: on TextlElounding box: on [+

VPO > = 1 I

Ob]ects Sphere  Torus  Blue Light Objects XY Ohjects ¥ Ohjects ¥ [Ohjects 21 I

https://sourceforge.net/projects/glui/



https://sourceforge.net/projects/glui/

End for Input
and
Interaction




	Input and Interaction
	Physical Device
	Incremental (Relative) Devices
	Logical Properties
	Logical Properties
	Logical Properties (Graphical Input)
	Input Modes
	Input Modes
	Terminology
	Request Mode
	Event Mode
	Event Mode
	GLUT callbacks
	GLUT Event Loop
	The display callback
	Slide Number 16
	Animating a Display
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	In single buffer mode, you call this at the end:��glFlush();��In double buffer mode, you call:��glutSwapBuffers();
	Working with Callbacks
	Using the idle callback
	The mouse callback
	Positioning
	Terminating a program
	Drawing squares at cursor location
	Using the motion callback
	Using the keyboard
	Special and Modifier Keys
	Reshaping the window
	Reshape possiblities
	The Reshape callback
	The Reshape callback
	Toolkits and Widgets
	End for Input and Interaction

