
Input and
Interaction
Hamzah Asyrani Sulaiman

Physical Device

Incremental (Relative)
Devices

Must integrate these inputs to obtain an
absolute position

• Rotation of cylinders in mouse
• Roll of trackball
• Difficult to obtain absolute position
• Can get variable sensitivity

Logical Properties

• What is returned to program via API
• A position
• An object identifier

The code provides logical input
A number (an int) is returned to the program regardless of the
physical device

Consider the C and C++ code
C++: cin >> x;
C: scanf (“%d”, &x);

Logical Properties

Logical
Properties
(Graphical

Input)

• Locator: return a position
• Pick: return ID of an object
• Keyboard: return strings of characters
• Stroke: return array of positions
• Valuator: return floating point number
• Choice: return one of n items

Input Modes

• How and when input is
obtained

• Request or event

Input Modes

Input devices contain a trigger which
can be used to send a signal to the
operating system

• Button on mouse
• Pressing or releasing a key

When triggered, input devices return
information (their measure) to the
system

• Mouse returns position
information

• Keyboard returns ASCII code

Terminology

measure - information returned to user
program

•one or more characters from a
keyboard
•position for a locator

trigger - way device user can signal the
computer that input is available

•Enter key
•button on locator

Request Mode

Event Mode

Event Mode
• Window: resize, expose, iconify
• Mouse: click one or more buttons
• Motion: move mouse
• Keyboard: press or release a key
• Idle: nonevent

• Define what should be done if no other
event is in queue

GLUT callbacks
• glutDisplayFunc
• glutMouseFunc
• glutReshapeFunc
• glutKeyboardFunc
• glutIdleFunc
• glutMotionFunc, glutPassiveMotionFunc

GLUT Event Loop

glutMainLoop();

which puts the program in an infinite
event loop

The display callback

glutDisplayFunc(mydisplay)
identifies the function to be executed

• When the window is first opened
• When the window is reshaped
• When a window is exposed
• When the user program decides it wants to

change the display

glutPostRedisplay();
GLUT checks to see if the flag is set at the end of the event loop

https://stackoverflow.com/questi
ons/4206472/understanding-the-
relationship-between-
glutdisplayfunc-and-
glutpostredisplay/4206529

https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529
https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529
https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529
https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529
https://stackoverflow.com/questions/4206472/understanding-the-relationship-between-glutdisplayfunc-and-glutpostredisplay/4206529

Animating a Display
glClear() clearing the window

glutInitDisplayMode(GL_RGB | GL_DOUBLE)

void mydisplay()
{

glClear(GL_COLOR_BUFFER_BIT|….)
.
/* draw graphics here */
.

glutSwapBuffers()
}

Difference
between single

buffered(GLUT_
SINGLE) and

double buffered
drawing(GLUT_

DOUBLE)

• When using GL_SINGLE, you can picture your
code drawing directly to the display.

• When using GL_DOUBLE, you can picture
having two buffers. One of them is always
visible, the other one is not. You always render to
the buffer that is not currently visible. When
you're done rendering the frame, you swap the
two buffers, making the one you just rendered
visible. The one that was previously visible is
now invisible, and you use it for rendering the
next frame. So the role of the two buffers is
reversed each frame.

In single buffer mode, you call this at
the end:

glFlush();

In double buffer mode, you call:

glutSwapBuffers();

Working with Callbacks
Hamzah Asyrani Sulaiman

You must read this slide together with the text book or Angel Powerpoint slides

Using the idle callback
glutIdleFunc(myidle)

The idle callback is executed whenever there are no events in
the event queue

The mouse callback
• glutMouseFunc(mymouse)

• void mymouse(GLint button, GLint state, GLint x,
GLint y)

Positioning

OpenGL uses a world coordinate system with
origin at the bottom left

•Must invert y coordinate returned by
callback by height of window
•y = h – y;

(0,0)
h

w

Terminating a program
void mouse(int btn, int state, int x, int y)
{

if(btn==GLUT_RIGHT_BUTTON &&
state==GLUT_DOWN)

exit(0);
}

28 Angel: Interactive Computer Graphics 4E © Addison-Wesley
2005

Drawing squares at cursor location
void mymouse(int btn, int state, int x, int y)
{

if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)
exit(0);

if(btn==GLUT_LEFT_BUTTON && state==GLUT_DOWN)
drawSquare(x, y);

}
void drawSquare(int x, int y)
{

y=w-y; /* invert y position */
glColor3ub((char) rand()%256, (char) rand)%256, (char)

rand()%256); /* a random color */
glBegin(GL_POLYGON);

glVertex2f(x+size, y+size);
glVertex2f(x-size, y+size);
glVertex2f(x-size, y-size);
glVertex2f(x+size, y-size);

glEnd();
}

Using the motion callback

We can draw squares (or anything else) continuously as long
as a mouse button is depressed by using the motion
callback

glutMotionFunc(drawSquare)

We can draw squares without depressing a button using the
passive motion callback

glutPassiveMotionFunc(drawSquare)

Using the keyboard
glutKeyboardFunc(mykey)

void mykey(unsigned char key,int x, int y)
Returns ASCII code of key depressed and mouse location

void mykey()
{

if(key == ‘Q’ | key == ‘q’)
exit(0);

}

Special and Modifier Keys
Function key 1: GLUT_KEY_F1
Up arrow key: GLUT_KEY_UP
if(key == ‘GLUT_KEY_F1’ ……

Returns ASCII code of key depressed and mouse location

Can also check of one of the modifiers
GLUT_ACTIVE_SHIFT
GLUT_ACTIVE_CTRL
GLUT_ACTIVE_ALT

Reshaping the window

• Must redraw from application
• Two possibilities

 Display part of world
 Display whole world but force to fit in new window

 Can alter aspect ratio

We can reshape and resize the OpenGL
display window by pulling the corner of
the window

Reshape possiblities

original

reshaped

The Reshape callback
glutReshapeFunc(myreshape)
void myreshape(int w, int h)

• Returns width and height of new window (in pixels)
• A redisplay is posted automatically at end of execution of the

callback
• GLUT has a default reshape callback but you probably want to

define your own

The Reshape callback
void myReshape(int w, int h)
{

glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION); /* switch matrix mode */
glLoadIdentity();
if (w <= h)

gluOrtho2D(-2.0, 2.0, -2.0 * (GLfloat) h / (GLfloat) w,
2.0 * (GLfloat) h / (GLfloat) w);

else gluOrtho2D(-2.0 * (GLfloat) w / (GLfloat) h, 2.0 *
(GLfloat) w / (GLfloat) h, -2.0, 2.0);

glMatrixMode(GL_MODELVIEW); /* return to modelview mode */
}

Toolkits and Widgets
• Menus
• Slidebars
• Dials
• Input boxes

https://sourceforge.net/projects/glui/

https://sourceforge.net/projects/glui/

End for Input
and
Interaction

	Input and Interaction
	Physical Device
	Incremental (Relative) Devices
	Logical Properties
	Logical Properties
	Logical Properties (Graphical Input)
	Input Modes
	Input Modes
	Terminology
	Request Mode
	Event Mode
	Event Mode
	GLUT callbacks
	GLUT Event Loop
	The display callback
	Slide Number 16
	Animating a Display
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	In single buffer mode, you call this at the end:��glFlush();��In double buffer mode, you call:��glutSwapBuffers();
	Working with Callbacks
	Using the idle callback
	The mouse callback
	Positioning
	Terminating a program
	Drawing squares at cursor location
	Using the motion callback
	Using the keyboard
	Special and Modifier Keys
	Reshaping the window
	Reshape possiblities
	The Reshape callback
	The Reshape callback
	Toolkits and Widgets
	End for Input and Interaction

