
Viewing and Texture Mapping
In OPENGL

VIEWING

1. One or more objects

2. A viewer with a projection
surface

3. Projectors that go from the
object(s) to the projection
surface

VIEWING

VIEWING

VIEWING Perspective Projection

VIEWING

• Parallel Projection

VIEWING Both

VIEWING

• Orthographic Projection

10
E. Angel and D. Shreiner : Interactive Computer

Graphics 6E © Addison-Wesley 2012

Oblique Projection
Arbitrary relationship between projectors and projection plane

VIEWING

11
E. Angel and D. Shreiner : Interactive Computer

Graphics 6E © Addison-Wesley 2012

Advantages and Disadvantages

• Can pick the angles to emphasize a particular face
• Architecture: plan oblique, elevation oblique

• Angles in faces parallel to projection plane are preserved while we can
still see “around” side

• In physical world, cannot create with simple camera; possible with
bellows camera or special lens (architectural)

VIEWING

E. Angel and D. Shreiner : Interactive Computer

Graphics 6E © Addison-Wesley 2012

Allow projection plane to move relative to object

classify by how many angles of

a corner of a projected cube are

the same

none: trimetric

two: dimetric

three: isometric

q 1

q 3q 2

VIEWING Axonometric projections

VIEWING

• Axonometric projections

VIEWING

Axonometric projections - Advantages and Disadvantages

• Lines are scaled (foreshortened) but can find
scaling factors

• Lines preserved but angles are not

• Projection of a circle in a plane not parallel to
the projection plane is an ellipse

• Can see three principal faces of a box-like object

• Some optical illusions possible

• Parallel lines appear to diverge

• Does not look real because far objects are scaled
the same as near objects

• Used in CAD applications

16
E. Angel and D. Shreiner : Interactive Computer

Graphics 6E © Addison-Wesley 2012

Vanishing Points

• Parallel lines (not parallel to the projection plan) on the object converge
at a single point in the projection (the vanishing point)

• Drawing simple perspectives by hand uses these vanishing point(s)

vanishing point

VIEWING

17
E. Angel and D. Shreiner : Interactive Computer

Graphics 6E © Addison-Wesley 2012

Three-Point Perspective

• No principal face parallel to projection plane

• Three vanishing points for cube

VIEWING

18
E. Angel and D. Shreiner : Interactive Computer

Graphics 6E © Addison-Wesley 2012

Two-Point Perspective

• On principal direction parallel to projection plane

• Two vanishing points for cube

VIEWING

19
E. Angel and D. Shreiner : Interactive Computer

Graphics 6E © Addison-Wesley 2012

One-Point Perspective

• One principal face parallel to projection plane

• One vanishing point for cube

VIEWING

20
E. Angel and D. Shreiner : Interactive Computer

Graphics 6E © Addison-Wesley 2012

Advantages and Disadvantages

• Objects further from viewer are projected smaller than the same sized
objects closer to the viewer (diminution)
• Looks realistic

• Equal distances along a line are not projected into equal distances
(nonuniform foreshortening)

• Angles preserved only in planes parallel to the projection plane

• More difficult to construct by hand than parallel projections (but not
more difficult by computer)

VIEWING

VIEWING IN OPENGL

clipped out

z=0

2

VIEWING IN OPENGL

• gluLookAt

VIEWING IN OPENGL gluLookAt

LookAt(eye, at, up)

VIEWING IN OPENGL glfrustum

Frustum(left,right,bottom,top,near,far)

VIEWING IN OPENGL DIFFERENCES

Frustum(left,right,bottom,top,near,far)

VIEWING IN OPENGL gluPerspective

Perpective(fovy, aspect, near, far)

aspect = w/h

front plane

VIEWING IN OPENGL gluPerspective

Perpective(fovy, aspect, near, far)

Texture
Mapping

geometric model texture mapped

TEXTURE MAPPING

TEXTURE MAPPING

TEXTURE MAPPING

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Is it simple?
• Although the idea is simple---map an image to a surface---there are 3

or 4 coordinate systems involved

2D image

3D surface

TEXTURE MAPPING

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Mapping Functions

• Basic problem is how to find the maps

• Consider mapping from texture coordinates to a point a surface

• Appear to need three functions
x = x(s,t)

y = y(s,t)

z = z(s,t)

• But we really want

to go the other way
s

t

(x,y,z)

TEXTURE MAPPING

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

parametric coordinates

texture coordinates

world coordinates
window coordinates

TEXTURE MAPPING

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Two-part mapping

• One solution to the mapping problem is to first map the texture to a
simple intermediate surface

• Example: map to cylinder

TEXTURE MAPPING

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Cylindrical Mapping

parametric cylinder

x = r cos 2p u

y = r sin 2pu

z = v/h

maps rectangle in u,v space to cylinder

of radius r and height h in world coordinates

s = u

t = v

maps from texture space

TEXTURE MAPPING

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Spherical Map

We can use a parametric sphere

x = r cos 2pu

y = r sin 2pu cos 2pv

z = r sin 2pu sin 2pv

in a similar manner to the cylinder

but have to decide where to put

the distortion

Spheres are used in environmental maps

TEXTURE MAPPING

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Box Mapping

• Easy to use with simple orthographic projection

• Also used in environment maps

TEXTURE MAPPING

Other mapping
strategy

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Second Mapping

• Map from intermediate object to actual object
• Normals from intermediate to actual

• Normals from actual to intermediate

• Vectors from center of intermediate

intermediateactual

TEXTURE MAPPING

E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Aliasing

• Point sampling of the texture can lead to aliasing errors

point samples in u,v

(or x,y,z) space

point samples in texture space

miss blue stripes

TEXTURE MAPPING

44
E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Area Averaging

A better but slower option is to use area averaging

Note that preimage of pixel is curved

pixel
preimage

TEXTURE MAPPING

OpenGL Texture
Mapping

Ed Angel

Professor Emeritus of
Computer Science

University of New Mexico

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
4
5

Objectives • Introduce the OpenGL texture functions and
options

Basic Strategy

Three steps to applying a texture

1. specify the texture

• read or generate image

• assign to texture

• enable texturing

2. assign texture coordinates to
vertices

• Proper mapping function is left
to application

3. specify texture parameters

• wrapping, filtering

49
E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Texture Mapping

s

t

x

y

z

image

geometry display

Texture Example

• The texture (below) is a 256 x 256 image
that has been mapped to a rectangular
polygon which is viewed in perspective

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
5
0

Specifying a
Texture Image

• Define a texture image from an array of
texels (texture elements) in CPU

memory

Glubyte

my_texels[512][512];

• Define as any other pixel map

• Scanned image

• Generate by application code

• Enable texture mapping

• glEnable(GL_TEXTURE_2D)

• OpenGL supports 1-4 dimensional
texture maps

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
5
1

Define Image
as a Texture

glTexImage2D(target, level, components,

w, h, border, format, type, texels);

target: type of texture, e.g. GL_TEXTURE_2D

level: used for mipmapping (discussed later)

components: elements per texel

w, h: width and height of texels in pixels

border: used for smoothing (discussed later)

format and type: describe texels

texels: pointer to texel array

glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0,

GL_RGB, GL_UNSIGNED_BYTE, my_texels);

53
E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

• Based on parametric texture coordinates

• glTexCoord*() specified at each vertex

s

t
1, 1

0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

Mapping a Texture

54
E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Interpolation

OpenGL uses interpolation to find proper texels from specified texture
coordinates

Can be distortions

good selection

of tex coordinates

poor selection

of tex coordinates

texture stretched

over trapezoid

showing effects of

bilinear interpolation

Texture Parameters

• OpenGL has a variety of parameters
that determine how texture is applied

• Wrapping parameters determine
what happens if s and t are outside
the (0,1) range

• Filter modes allow us to use area
averaging instead of point samples

• Mipmapping allows us to use
textures at multiple resolutions

• Environment parameters determine
how texture mapping interacts with
shading

56
E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Wrapping Mode

Clamping: if s,t > 1 use 1, if s,t <0 use 0

Wrapping: use s,t modulo 1
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_T, GL_REPEAT)

texture

s

t

GL_CLAMP

wrapping

GL_REPEAT

wrapping

58
E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Magnification and Minification

Texture Polygon

Magnification Minification

PolygonTexture

More than one texel can cover a pixel (minification) or

more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering

(2 x 2 filter) to obtain texture values

60
E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Filter Modes

Modes determined by
• glTexParameteri(target, type, mode)

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER,

GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER,

GL_LINEAR);

https://learnopengl.com/Getting-started/Textures

Mipmapped
Textures

• Mipmapping allows for prefiltered
texture maps of decreasing resolutions

• Lessens interpolation errors for smaller
textured objects

• Declare mipmap level during texture
definition

glTexImage2D(

GL_TEXTURE_*D, level, …)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 65

mipmaps

In computer graphics, mipmaps

(also MIP maps) or pyramids [1][2][3] are pre-
calculated, optimized sequences of images, each of
which is a progressively lower resolution
representation of the same image.

https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Mipmap#cite_note-1
https://en.wikipedia.org/wiki/Mipmap#cite_note-2
https://en.wikipedia.org/wiki/Mipmap#cite_note-3
https://en.wikipedia.org/wiki/Optimization_(computer_science)

67
E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Example

point
sampling

mipmapped

point

sampling

mipmapped

linear

filtering

linear

filtering

Texture Functions
(GL_TEXTURE_ENV_MODE)

E
. A

n
g
el an

d
 D

. S
h
rein

er: In
teractiv

e C
o
m

p
u
ter G

rap
h
ics 6

E
 ©

 A
d
d
iso

n
-W

esley
2
0
1
2

Controls how texture is applied

• glTexEnv{fi}[v](

GL_TEXTURE_ENV, prop, param

)

• GL_TEXTURE_ENV_MODE modes

• GL_MODULATE: modulates with
computed shade

• GL_BLEND: blends with an
environmental color

• GL_REPLACE: use only texture
color

• GL(GL_TEXTURE_ENV,

GL_TEXTURE_ENV_MODE,

GL_MODULATE);

• Set blend color with
GL_TEXTURE_ENV_COLOR

6
8

71
E. Angel and D. Shreiner: Interactive Computer

Graphics 6E © Addison-Wesley 2012

Using Texture Objects

1. specify textures in texture objects

2. set texture filter

3. set texture function

4. set texture wrap mode

5. set optional perspective correction hint

6. bind texture object

7. enable texturing

8. supply texture coordinates for vertex
• coordinates can also be generated

	Slide 1: Viewing and Texture Mapping
	Slide 2: VIEWING
	Slide 3: VIEWING
	Slide 4: VIEWING
	Slide 5: VIEWING
	Slide 6
	Slide 7: VIEWING
	Slide 8: VIEWING
	Slide 9: VIEWING
	Slide 10: Oblique Projection
	Slide 11: Advantages and Disadvantages
	Slide 12
	Slide 13
	Slide 14: VIEWING
	Slide 15
	Slide 16: Vanishing Points
	Slide 17: Three-Point Perspective
	Slide 18: Two-Point Perspective
	Slide 19: One-Point Perspective
	Slide 20: Advantages and Disadvantages
	Slide 21: VIEWING IN OPENGL
	Slide 22: VIEWING IN OPENGL
	Slide 23: VIEWING IN OPENGL
	Slide 24: VIEWING IN OPENGL
	Slide 25: VIEWING IN OPENGL
	Slide 26: VIEWING IN OPENGL
	Slide 27: VIEWING IN OPENGL
	Slide 28: Texture Mapping
	Slide 29: TEXTURE MAPPING
	Slide 30: TEXTURE MAPPING
	Slide 31: TEXTURE MAPPING
	Slide 32: Is it simple?
	Slide 33: Mapping Functions
	Slide 34
	Slide 35: Two-part mapping
	Slide 36: Cylindrical Mapping
	Slide 37
	Slide 38: Spherical Map
	Slide 39
	Slide 40: Box Mapping
	Slide 41: Other mapping strategy
	Slide 42: Second Mapping
	Slide 43: Aliasing
	Slide 44: Area Averaging
	Slide 45: OpenGL Texture Mapping
	Slide 46: Objectives
	Slide 47: Basic Strategy
	Slide 48
	Slide 49: Texture Mapping
	Slide 50: Texture Example
	Slide 51: Specifying a Texture Image
	Slide 52: Define Image as a Texture
	Slide 53: Mapping a Texture
	Slide 54: Interpolation
	Slide 55: Texture Parameters
	Slide 56: Wrapping Mode
	Slide 57
	Slide 58: Magnification and Minification
	Slide 59
	Slide 60: Filter Modes
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Mipmapped Textures
	Slide 66: mipmaps
	Slide 67: Example
	Slide 68: Texture Functions (GL_TEXTURE_ENV_MODE)
	Slide 69
	Slide 70
	Slide 71: Using Texture Objects

