Viewing and Texture Mapping

In OPENGL

e\
~ 2 Al
M, _ b
: > 9 g

VIEWING

One or more objects

A viewer with a projection
surface

Projectors that go from the
object(s) to the projection
surface

" —
— T
R S——
— "

DN AN
TN N
NN

. \

far
clip
plane A

VIEWING

re I__ . o
i

viewing
frustum near
clip plane viewpoint

VIEWING

VI EWI N G Perspective Projection

Object (tree)

Picture Surface

Projector—__

| Depicted |

Projection plane

Observer

COP

PERSPECTIVE PROJECTION

Virtual objects
(3D models)

Viewport
(Computer screen)

Camera Image Volume

Obiject

VIEWING

\Pro]ecror

* Parallel Projection DOP

Projection plane

Farallelpiped
view yvolume

VIEWING g

Farallel projection Ferspective projection

VIEWING

Projection
plane
(top view)
. . 4 P~
e Orthographic Projection Z o view
e [[N o

/ / plane

Projectors for (side view)
— front view

/’mjecﬁon
plane

(front view)

VIEWING

Oblique Projection

Arbitrary relationship between projectors and projection plane

10

Projection plane

Projection plane

Projection plane

E. Angel and D. Shreiner : Interactive Computer
Graphics 6E © Addison-Wesley 2012

Advantages and Disadvantages

e Can pick the angles to emphasize a particular face
* Architecture: plan oblique, elevation oblique

* Angles in faces parallel to projection plane are preserved while we can
still see “around” side

* In physical world, cannot create with simple camera; possible with
bellows camera or special lens (architectural)

E. Angel and D. Shreiner : Interactive Computer
Graphics 6E © Addison-Wesley 2012

11

VI EWI N G Axonometric projections

Allow projection plane to move relative to object

classify by how many angles of
a corner of a projected cube are
the same

none: trimetric .
two: dimetric
three: Isometric

Projection plane

E. Angel and D. Shreiner : Interactive Computer
Graphics 6E © Addison-Wesley 2012

VIEWING

Non-perspective 3D drawings: Axonometric Projections

* Axonometric projections
‘Trimetric’

‘Dimetric’

‘Isometric’

(Source: www.en. wikipedia.org)

Axonometric projections - Advantages and Disadvantages

* Lines are scaled (foreshortened) but can find
scaling factors

* Lines preserved but angles are not

* Projection of a circle in a plane not parallel to
the projection plane is an ellipse
VIEWING

Can see three principal faces of a box-like object

* Some optical illusions possible
* Parallel lines appear to diverge

Does not look real because far objects are scaled
the same as near objects

Used in CAD applications

E. Angel and D. Shreiner : Interactive Computer Graphics 6E © Addison-Wesley 2012 15

VIEWING

Vanishing Points

* Parallel lines (not parallel to the projection plan) on the object converge
at a single point in the projection (the vanishing point)

* Drawing simple perspectives by hand uses these vanishing point(s)

N\

vanishing point

E. Angel and D. Shreiner : Interactive Computer

10 Graphics 6E © Addison-Wesley 2012

VIEWING

Three-Point Perspective

* No principal face parallel to projection plane
* Three vanishing points for cube

E. Angel and D. Shreiner : Interactive Computer

Y Graphics 6E © Addison-Wesley 2012

VIEWING

Two-Point Perspective

* On principal direction parallel to projection plane
* Two vanishing points for cube

E. Angel and D. Shreiner : Interactive Computer

o Graphics 6E © Addison-Wesley 2012

VIEWING

One-Point Perspective

* One principal face parallel to projection plane
* One vanishing point for cube

E. Angel and D. Shreiner : Interactive Computer

w0 Graphics 6E © Addison-Wesley 2012

Advantages and Disadvantages

* Objects further from viewer are projected smaller than the same sized
objects closer to the viewer (diminution)

e Looks realistic

* Equal distances along a line are not projected into equal distances
(nonuniform foreshortening)

* Angles preserved only in planes parallel to the projection plane

* More difficult to construct by hand than parallel projections (but not
more difficult by computer)

E. Angel and D. Shreiner : Interactive Computer

20 Graphics 6E © Addison-Wesley 2012

VIEWING IN OPENGL

Ll

7« ‘/ clipped out

‘/ _— Projection plane
- z=0

VIEWING IN OPENGL

e gluLookAt

(up,.,

<

(at , ot , at)
)4 &

\

UPy, UPZ) & =t

A

Ty

7T leye,, eye,, eye)

Z

-

- X

VIEWING IN OPENGL pEme

LookAt (eye, at, up)

i gluLookAt(ql, 0,0,5, 0,0,0, 0,1,0);

\

\

| \
location of the camera dlrectloq the whether the
[Eve point J c?)ri]:\fi:\a » camera is up,
P 9 down, or

(Look-at point J slanted
[Up vector]

VIEWING IN OPENGL pEaEr

Frustum(left,right,bottom, top,near, far)

4 z = —far

. z = —near \

LR ™ (right, top, —near)

(left, bottom, —near)

- X

VIEWING IN OPENGL pelgzEes

Frustum(left,right,bottom, top,near, far)

With glFrustum With lookAt()

VIEWING IN OPENGL pEESSE2E

Perpective (fovy, aspect, near, far)

, «— front plane

— -~

aspect = w/h

fov

VIEWING IN OPENGL eSS

Perpective (fovy, aspect, near, far)

void gluPerspectivel{ GLdouble fovy, GLdouble aspect,
GLdouble zNear, GLdouble zFar)

p. . F-'J[)(_'C! -~ w

Y _ n h

Ay near __
> 6 T rlane far b .

ovy < o | plane aspect =w / h
¥oa Y : e 4
4 _.."
_
%? oe® o'
A

A

Figure 3-14 Perspective Viewing |

Volume Specified by glulerspective()

Texture
Mapping

geometric model texture mapped

TEXTURE MAPPING

TEXTURE MAPPING

* Texture Mapping
* Uses images to fill inside of polygons

* Environment (reflection mapping)

* Uses a picture of the environment for texture
maps

smooth shading bump mapping

* Allows simulation of highly specular surfaces

* Bump mapping

* Emulates altering normal vectors during the
rendering process

G eometry
processing

Fragment Frame

Vertices — .
processing buffer

Rasterization

Pixel
processing

Pixels ——»

TEXTURE MAPPING

TEXTURE MAPPING

s it simple?

* Although the idea is simple---map an image to a surface---there are 3
or 4 coordinate systems involved

3D surface

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

TEXTURE MAPPING

Mapping Functions

* Basic problem is how to find the maps
* Consider mapping from texture coordinates to a point a surface

* Appear to need three functions
X =X(s,1)

y =y(sh) ‘.
Z = 7(S,t) t

 But we really want
to go the other way

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

TEXTURE MAPPING

parametric coordinates

i

-5

texture coordinates

. window coordinates
world coordinates

z
éraphics 6E © Addison-Wesley 2012

TEXTURE MAPPING

Two-part mapping

* One solution to the mapping problem is to first map the texture to a
simple intermediate surface

* Example: map to cylinder

D

(

5

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

TEXTURE MAPPING

Cylindrical Mapping

parametric cylinder

X =1 CO0S 21t u
Yy =1 sin 2nu
z=Vv/h

maps rectangle in u,v space to cylinder
of radius r and height h in world coordinates

S=u
t=v

maps from texture space

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Cylindrical Image Mapping

Axis § Examples

Diagrams

X

Mapping detal
to a pipe segment.

Y

Mapping a label
onto a soda can
or awine bottle.

Z

Mapping detail
onto an engine
exhaust.

TEXTURE MAPPING

Spherical Map

We can use a parametric sphere

X =T COS 271tu
Yy = sin 27U C0S 2nV
Z =T sin 27U Sin 2wtV

In a similar manner to the cylinder
but have to decide where to put
the distortion

Spheres are used in environmental maps

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

)

\\\\

BN

AL

-
LAY

ARG

TEXTURE MAPPING

Box Mapping

e Easy to use with simple orthographic projection

* Also used in environment maps

5

Back

Left

Bottom

Right

Top

Front

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Other mapping
strategy

TEXTURE MAPPING

Second Mapping

 Map from intermediate object to actual object
* Normals from intermediate to actual
* Normals from actual to intermediate
* Vectors from center of intermediate

actual intermediate

e

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

TEXTURE MAPPING

Aliasing
* Point sampling of the texture can lead to aliasing errors

miss blue stripes point samples in u,v
(or Xx,y,z) space

//
v/ /s

-5 - {
point samples in texture space

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

iy
- <

TEXTURE MAPPING

Area Averaging

A better but slower option is to use area averaging

Y

-

T] _

preimage pixel

Z

Note that preimage of pixel is curved

E. Angel and D. Shreiner: Interactive Computer

. Graphics 6E © Addison-Wesley 2012

OpenGL Texture | =™

Professor Emeritus of
Computer Science

[]
M a p pl ng University of New Mexico
D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D.

Objectives

* Introduce the OpenGL texture functions and
options

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

46

Basic Strategy

Three steps to applying a texture
1. specify the texture
* read or generate image
* assign to texture
* enable texturing

2. assign texture coordinates to
vertices

* Proper mapping function is left
to application

3. specify texture parameters
* wrapping, filtering

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 7

A Little More Detail

1. Load Bitmap

2. Generate a Texture Handle
— glGenTextures (1, &temptex);

3 Bind and Configure

glBindTexture (GL_TEXTURE 2D, nNewTexturelID):
= glTexParameteri (GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL_ LINEAR):
- glTexParameteri (GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL_LINEAR):;
- glTexParameteri (GL _TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT);
glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);

4 Build the Texture in OpenGL

- gluBuild2DMipmaps (GL_TEXTURE 2D, nBPP, nWidth, nHeight,
- (nBPP == 3 ? GL_RGB : GL RGBA),GL UNSIGNED BYTE,
- pData) ;

Texture Mapping

v

geometry

S

E. Angel and D. Shreiner: Interactive Computer

49 Graphics 6E © Addison-Wesley 2012

Screen-space view

Texture Example

* The texture (below) is a 256 x 256 image
that has been mapped to a rectangular
polygon which is viewed in perspective

Texture-space view

[o — — — — — — —

T e, — — —

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

* Define a texture image from an array of
texels (texture elements) in CPU
memory

Glubyte
my texels[512]([512];

SpeC|fy| ng a * Define as any other pixel map
. e Scanned image
* Generate by application code

Texture Image

* Enable texture mapping
* glEnable (GL_TEXTURE 2D)

* OpenGL supports 1-4 dimensional
texture maps

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

glTexImage2D(target, level, components,
w, h, border, format, type, texels);

target: type of texture, e.g. GL _TEXTURE 2D
level: used for mipmapping (discussed later)
components: elements per texel

w, h: width and height of texels in pixels
border: used for smoothing (discussed later)
format and type: describe texels

texels: pointer to texel array

glTexImage2D (GL TEXTURE 2D, 0, 3, 512, 512, O,
GL RGB, GL UNSIGNED BYTE, my texels);

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

52

Mapping a Texture

* Based on parametric texture coordinates
« glTexCoord* () specified at each vertex

Texture Space Object Space
(s, t) = (0.2, 0.8)

E. Angel and D. Shreiner: Interactive Computer

> Graphics 6E © Addison-Wesley 2012

Interpolation

OpenGL uses interpolation to find proper texels from specified texture
coordinates

Can be distortions texture stretched
over trapezoid
good selection poor selection showing effects of

of tex coordinates of tex coordinates pilinear interpolation

5 E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Texture Parameters

* OpenGL has a variety of parameters
that determine how texture is applied

* Wrapping parameters determine
what happens if s and t are outside
the (0,1) range

* Filter modes allow us to use area
averaging instead of point samples

* Mipmapping allows us to use
textures at multiple resolutions

* Environment parameters determine

how texture mapping interacts with
shading

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 2

Wrapping Mode

Clamping: if s,t > 1 use 1, if s,t <O use O

Wrapping: use S,t modulo 1

glTexParameteri (GL TEXTURE 2D,
GL TEXTURE WRAP S, GL CLAMP)

glTexParameteri (GL TEXTURE 2D,
GL TEXTURE WRAP T, GL REPEAT)

GL_REPEAT GL CLAMP
texture wrapping wrapping

E. Angel and D. Shreiner: Interactive Computer

> Graphics 6E © Addison-Wesley 2012

GL_CLAMP_TO_BORDER

GL_CLAMP_TO_EDGE

—
<C
L
o
w
o
)
L
o<
o)
o
=
=
-
()

GL_REPEAT

Magnification and Minification

More than one texel can cover a pixel (minification) or
more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering
(2 x 2 filter) to obtain texture values

L]
1 I e
/—4/"/ -
Texture Polygon Texture Polygon
Magnification Minification

E. Angel and D. Shreiner: Interactive Computer

> Graphics 6E © Addison-Wesley 2012

2D texture mapping (3)

_* Mapping texels to pixels

EN N 5 - |l.3

> >
- >

) »Ys S »Y<
Magnification: large Minification: min

glTexParameteri(GL_TEXTURE_2D,6L_TEXTURE_MAG_FILTER,
GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D,6L_TEXTURE_MIN_FILTER,

b_NEAREST):
- @

Filter Modes

Modes determined by
* glTexParameteri(target, type, mode)

glTexParameteri (GL_TEXTURE 2D, GL TEXURE MAG FILTER,
GL_NEAREST) ;

glTexParameteri (GL_TEXTURE 2D, GL TEXURE MIN FILTER,
GL_LINEAR) ;

E. Angel and D. Shreiner: Interactive Computer

® Graphics 6E © Addison-Wesley 2012

f
(0, 1)
& | @
GL_LINEAR); ——
GL_LINEAR); -
(0, 0)
linear nearest v

%

(1.1}

(1. 0)

t

(o, ll%
+

{0, 0)

(1,1)

(1, 0)

GL_NEAREST

GL_LINEAR

Mipmappping

https://learnopengl.com/Getting-started/Textures

GL_NEAREST GL_LINEAR

Hardware Shadow Map
Filtering Example

GL_NEAREST: blocky GL_LINEAR: antialiased edges

Low shadow map resolution
used to heightens filtering artifacts
ZVIDIA

CoentL.

Texture mapping parameters(3)

= OpenGL texture filtering:

2) Linear interpolate the neighbors
(better quality, slower)

1l

. ITexParameteri(GL_TEXTURE_2D
glTexParameteri(GL_TEXTURE_2D, 9 ~ —<b;
GL_TEXTURE_MIN_FILTER, GL_NEAREST); GL_TEXTURE_MIN_FILTER,

GL_LINEAR)
‘\ /

Or GL_TEXTURE_MAX_FILTER

1) Nearest Neighbor (lower
image quality)

Mipmapped
Textures

* Mipmapping allows for prefiltered
texture maps of decreasing resolutions

e Lessens interpolation errors for smaller
textured objects

* Declare mipmap level during texture
definition
glTexImage2D (
GL_TEXTURE *D, level,

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012 65

mipmaps

In computer graphics, mipmaps

(also MIP maps) or pyramids 11213l gre pre-
calculated, optimized sequences of images, each of
which is a progressively lower resolution
representation of the same image.

https://en.wikipedia.org/wiki/Computer_graphics
https://en.wikipedia.org/wiki/Mipmap#cite_note-1
https://en.wikipedia.org/wiki/Mipmap#cite_note-2
https://en.wikipedia.org/wiki/Mipmap#cite_note-3
https://en.wikipedia.org/wiki/Optimization_(computer_science)

Example

point linear
sampling filtering
mipmapped mipmapped
pom_t linear
sampling filtering

J

67 J : . o l\n-. (&4 3
Graphics 6E © Addison-Wesley 2012

Controls how texture is applied

* glTexEnv{fi} [v] (
GL TEXTURE ENV, prop, param

)

« GL_TEXTURE ENV_ MODE modes

* GL MODULATE: modulates with
computed shade

* GL BLEND: blends with an
Texture Functions environmental color
(GL._TEXTURE ENV_ MODE) * GL_REPLACE: use only texture
color
* GL(GL TEXTURE ENV,
GL_TEXTURE_ENV_MODE ,
GL_MODULATE) ;

o
>
>
[(=]
@,
b}
=}
o
o
w
=
=
a,
>3
@D
oy
S
—+
@D
=
)
Q
=1
3
O
o
3
©
(=
=
@
=
®
=
QD
o
=
Q
2]
(2]
m
©
>
=
»
o
=}
=
@D
@,
@D
<

e Set blend color with
GL_TEXTURE ENV_COLOR

Polygon Fragment

Texture Element

GL_DECAL GL_MODULATE

GL_DECAL GL MODULATE GL_BLEND

o
L 4

Non-textured
Teapot
See texgen.c

|| GL_RGB =08, 2= Cf(1-Ct) +

GL_RGBA > -Ct) +
E "(- 2

Using Texture Objects

specify textures in texture objects

set texture filter

set texture function

set texture wrap mode

set optional perspective correction hint
bind texture object

enable texturing

O N O Uk WwWbhRE

supply texture coordinates for vertex
 coordinates can also be generated

E. Angel and D. Shreiner: Interactive Computer

" Graphics 6E © Addison-Wesley 2012

	Slide 1: Viewing and Texture Mapping
	Slide 2: VIEWING
	Slide 3: VIEWING
	Slide 4: VIEWING
	Slide 5: VIEWING
	Slide 6
	Slide 7: VIEWING
	Slide 8: VIEWING
	Slide 9: VIEWING
	Slide 10: Oblique Projection
	Slide 11: Advantages and Disadvantages
	Slide 12
	Slide 13
	Slide 14: VIEWING
	Slide 15
	Slide 16: Vanishing Points
	Slide 17: Three-Point Perspective
	Slide 18: Two-Point Perspective
	Slide 19: One-Point Perspective
	Slide 20: Advantages and Disadvantages
	Slide 21: VIEWING IN OPENGL
	Slide 22: VIEWING IN OPENGL
	Slide 23: VIEWING IN OPENGL
	Slide 24: VIEWING IN OPENGL
	Slide 25: VIEWING IN OPENGL
	Slide 26: VIEWING IN OPENGL
	Slide 27: VIEWING IN OPENGL
	Slide 28: Texture Mapping
	Slide 29: TEXTURE MAPPING
	Slide 30: TEXTURE MAPPING
	Slide 31: TEXTURE MAPPING
	Slide 32: Is it simple?
	Slide 33: Mapping Functions
	Slide 34
	Slide 35: Two-part mapping
	Slide 36: Cylindrical Mapping
	Slide 37
	Slide 38: Spherical Map
	Slide 39
	Slide 40: Box Mapping
	Slide 41: Other mapping strategy
	Slide 42: Second Mapping
	Slide 43: Aliasing
	Slide 44: Area Averaging
	Slide 45: OpenGL Texture Mapping
	Slide 46: Objectives
	Slide 47: Basic Strategy
	Slide 48
	Slide 49: Texture Mapping
	Slide 50: Texture Example
	Slide 51: Specifying a Texture Image
	Slide 52: Define Image as a Texture
	Slide 53: Mapping a Texture
	Slide 54: Interpolation
	Slide 55: Texture Parameters
	Slide 56: Wrapping Mode
	Slide 57
	Slide 58: Magnification and Minification
	Slide 59
	Slide 60: Filter Modes
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65: Mipmapped Textures
	Slide 66: mipmaps
	Slide 67: Example
	Slide 68: Texture Functions (GL_TEXTURE_ENV_MODE)
	Slide 69
	Slide 70
	Slide 71: Using Texture Objects

