Tutorial Root Finding

A. Bisection method

- 1. Consider finding the root of $f(x) = x^2 3$. Let $\varepsilon_{\text{step}} = 0.01$, $\varepsilon_{\text{abs}} = 0.01$ and start with the interval [1, 2].
- 2. Consider finding the root of $f(x) = e^{-x}(3.2 \sin(x) 0.5 \cos(x))$ on the interval [3, 4], this time with $\varepsilon_{\text{step}} = 0.001$, $\varepsilon_{\text{abs}} = 0.001$.
- 3. Find the root of $f(x)=x^6-x-1=0$ accurate to within $\epsilon=0.001$. Given that $x_a=1$ and $x_b=2$.
- 4. Use 3 iterations of the bisection method to determine the root of $f(x)=x^3-7.5x^2+17.75x-13.125$. Employ initial guesses of $x_a=1.2$ and $x_b=2$.
- 5. Find the root of $f(x)=x^2-x-2=0$ accurate to within $\varepsilon=0.002$. Given $x_a=1$, $x_b=4$.

B. Newton's method

- 6. Find the value of x if $x^3=20$ using Newton-Rhapson method for three iterations.
- 7. $f(x) = x 2 + \ln x$ has a root near x = 1.5. Use the Newton-Raphson method to obtain a better estimate.
- 8. The function $f(x) = x \tan x$ has a simple root near x = 4.5. Use one iteration of the Newton-Raphson method to find a more accurate value for the root.
- 9. Estimate the root of $f(x) = 0.9x^2 + 1.7x 5$ employing an initial guess of $x_0 = 1$ accurate to within $\epsilon = 0.001$.
- 10. Estimate the root of $f(x)=e^{-x}$ -x employing an initial guess of $x_0=0$ accurate to within $\epsilon=0.001$.

C. Secant method

- 11. Find the value of x if x^3 =20 using Secant method for three iteration, where x_0 =4 and x_1 =5.5.
- 12. Use the secant method to estimate the root of $f(x) = e^{-x} x$. Start with initial estimates of x-1 = 0 and x0 = 1.0.