Tutorial Interpolation

A. Newton's Divided-Difference interpolating polynomials

- 1. Estimate the natural logarithm of 2 using linear interpolation. First perform the computation by interpolating between $\ln 1 = 0$ and $\ln 6 = 1.791759$. Then repeat the procedure, but use a smaller interval from $\ln 1$ to $\ln 4$ (1.386294). Note that the true value of $\ln 2$ is 0.6931472.
- 2. Fit a second-order polynomial to the three points and use it to evaluate In 2

$$X_0 = 1$$
 $f(x_0)=0$

$$X_1 = 4$$
 $f(x_1) = 1.386294$

$$X_2 = 6$$
 $f(x_2)=1.791759$

3. Referring to question 2 above, add the fourth point as follows

$$X_3 = 5$$
 $f(x3) = 1.609438$

Estimate In 2 with a third order Newton's interpolating polynomial

4. For the function cos (-x), given that

Х	0.5	1.0	1.5	2.0
f(x)	0.8776	0.5403	0.0707	-0.4161

By using linear interpolation with h=1.0 and h=0.5 estimate cos (-1.0287)

5. For the function e^{-x}, given that

Х	0.91	0.92	0.93	0.94
f(x)	0.4025	0.3985	0.3946	0.3906

By using quadratic interpolation, estimate e^{-0.9321}

6. For the function e^{-x}, given that

х	0.91	0.92	0.93	0.94
f(x)	0.4025	0.3985	0.3946	0.3906

By using cubic interpolation, estimate e^{-0.9321}

B. Lagrange interpolating polynomials

7. Use a Lagrange interpolating polynomial of the first and second order to evaluate ln 2 on the basis of the following data:

$$X_0 = 1$$
 $f(x_0)=0$

$$X_1 = 4$$
 $f(x_1)=1.386294$

$$X_2 = 6$$
 $f(x_2)=1.791759$

- 8. Given that (2,5) and (3,7). Use a first order Lagrange interpolating polynomial to evaluate f(2.5).
- 9. Given that (1,2), (2,5) and (3,7). Use a second order Lagrange interpolating to evaluate f(2.5).