Tutorial 13: Numerical Integration

1. Use

- a) Trapezoidal rule
- b) Simpson's $\frac{1}{3}$ rule
- c) Multiple-application Simpson's $\frac{1}{3}$ rule, with n = 6
- d) Simpson $\frac{3}{8}$ rule
- e) Multiple-application Simpson $\frac{3}{8}$ rule, with n = 6

to evaluate the integrals

i)
$$\int_{0}^{3} (1 - e^{-x}) dx$$

ii)
$$\int_{-2}^{4} (1 - x - 4x^3 + x^5) dx$$

iii)
$$\int_0^{\frac{\pi}{2}} (8 + 4\sin x) dx$$

2. Integrate the function using **Trapezium Rule** with step sizes h = 0.5 and h = 0.25

$$\int_{1.25}^{2.25} x^2 e^{3x} dx$$

Given the true solution
$$\int_{1.25}^{2.25} x^2 e^{3x} dx = \left[(1/3) x^2 e^{3x} - (2/9) x e^{3x} + (2/27) e^{3x} \right]_{1.25}^{2.25}$$

Calculate the percent relative error for problem a(i). Comment on the accuracy of your answers.

3. Consider the following table of data, find the approximation of

$$\int_{2.0}^{2.6} f(x) dx$$
, using **Simpson's 3/8 rule**

X	1.8	2.0	2.2	2.4	2.6	2.8	3.0
f(x)	6.050	7.389	9.025	11.023	13.464	16.445	20.086

- 4. Use
 - (a) Multiple-application Simpson's $\frac{1}{3}$ rule with n = 4, and
 - (b) Multiple-application Simpson $\frac{3}{8}$ rule with $h = \frac{\pi}{12}$ to evaluate

$$\int_0^{\frac{\pi}{2}} 4e^{-2x} dx$$
 correct to five decimal places.

Given the true value is $8-4\sqrt{2}$. Calculate the absolute error for approximations (a) and (b) above.

5. Suppose that the current through a resistor is described by the function

$$i(t) = (60 - t)^2 + (60 - t)\sin(\sqrt{t})$$
 and the resistance is a function of the current, $R = 10i + 2i^{\frac{2}{3}}$.
Compute the average voltage over $t = 0$ to 60 using 6 segments Simpson's $\frac{1}{3}$ rule.

(Hint:
$$v(t) = \int i(t) \cdot R \ dt$$
)